Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering

Tom Tseng, Laxman Dhulipala, Julian Shun
{"title":"Parallel Batch-Dynamic Minimum Spanning Forest and the Efficiency of Dynamic Agglomerative Graph Clustering","authors":"Tom Tseng, Laxman Dhulipala, Julian Shun","doi":"10.1145/3490148.3538584","DOIUrl":null,"url":null,"abstract":"Hierarchical agglomerative clustering (HAC) is a popular algorithm for clustering data, but despite its importance, no dynamic algorithms for HAC with good theoretical guarantees exist. In this paper, we study dynamic HAC on edge-weighted graphs. As single-linkage HAC reduces to computing a minimum spanning forest (MSF), our first result is a parallel batch-dynamic algorithm for maintaining MSFs. On a batch of k edge insertions or deletions, our batch-dynamic MSF algorithm runs in O(k log6 n) expected amortized work and O(log4 n) span with high probability. It is the first fully dynamic MSF algorithm handling batches of edge updates with polylogarithmic work per update and polylogarithmic span. Using our MSF algorithm, we obtain a parallel batch-dynamic algorithm that can answer queries about single-linkage graph HAC clusters. Our second result is that dynamic graph HAC is significantly harder for other common linkage functions. For example, assuming the strong exponential time hypothesis, dynamic graph HAC requires Ω(n1-o(1)) work per update or query on a graph with n vertices for complete linkage, weighted average linkage, and average linkage. For complete linkage and weighted average linkage, the bound still holds even for incremental or decremental algorithms and even if we allow poly(n)-approximation. For average linkage, the bound weakens to Ω(n1/2-o(1)) for incremental and decremental algorithms, and the bounds still hold when allowing no(1) -approximation.","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"774 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hierarchical agglomerative clustering (HAC) is a popular algorithm for clustering data, but despite its importance, no dynamic algorithms for HAC with good theoretical guarantees exist. In this paper, we study dynamic HAC on edge-weighted graphs. As single-linkage HAC reduces to computing a minimum spanning forest (MSF), our first result is a parallel batch-dynamic algorithm for maintaining MSFs. On a batch of k edge insertions or deletions, our batch-dynamic MSF algorithm runs in O(k log6 n) expected amortized work and O(log4 n) span with high probability. It is the first fully dynamic MSF algorithm handling batches of edge updates with polylogarithmic work per update and polylogarithmic span. Using our MSF algorithm, we obtain a parallel batch-dynamic algorithm that can answer queries about single-linkage graph HAC clusters. Our second result is that dynamic graph HAC is significantly harder for other common linkage functions. For example, assuming the strong exponential time hypothesis, dynamic graph HAC requires Ω(n1-o(1)) work per update or query on a graph with n vertices for complete linkage, weighted average linkage, and average linkage. For complete linkage and weighted average linkage, the bound still holds even for incremental or decremental algorithms and even if we allow poly(n)-approximation. For average linkage, the bound weakens to Ω(n1/2-o(1)) for incremental and decremental algorithms, and the bounds still hold when allowing no(1) -approximation.
并行批处理-动态最小生成森林与动态聚类图聚类效率
层次聚类(HAC)是一种常用的数据聚类算法,但尽管它很重要,但目前还没有一种具有良好理论保证的动态聚类算法。本文研究了边加权图上的动态HAC问题。由于单链接HAC简化为计算最小生成森林(MSF),我们的第一个结果是用于维护MSF的并行批处理动态算法。对于一批k个边插入或删除,我们的批动态MSF算法以高概率运行在O(k log6 n)期望平摊工作和O(log4 n)张成的空间中。它是第一个完全动态的MSF算法,处理每次更新和多对数跨度的多对数工作的边缘更新批次。使用我们的MSF算法,我们得到了一个并行的批量动态算法,可以回答关于单链接图HAC簇的查询。我们的第二个结果是,动态图HAC对于其他常见的链接函数来说要困难得多。例如,假设强指数时间假设,动态图HAC需要Ω(n1-o(1))次更新或查询具有n个顶点的图,以实现完全链接、加权平均链接和平均链接。对于完全连杆和加权平均连杆,即使我们允许多(n)逼近,该界仍然适用于增量或递减算法。对于平均联动,对于增量和递减算法,边界减弱为Ω(n1/2-o(1)),当允许no(1) -近似时,边界仍然成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信