Hydrodynamic Optimization of a Containership

Yanxin Feng, O. E. Moctar, T. Schellin
{"title":"Hydrodynamic Optimization of a Containership","authors":"Yanxin Feng, O. E. Moctar, T. Schellin","doi":"10.1115/omae2020-18616","DOIUrl":null,"url":null,"abstract":"\n Using open-source software Dakota, this paper describes the process of generating an optimal parametric hull shape for a generic containership. Selected design variables defined the ship’s hull, and the influence of these variables on calm water resistance was analyzed. Computations of the flow around the hull were obtained from a validated nonlinear potential flow boundary element method. Using the multi-objective optimization algorithm Surrogate Based Global Optimization (SBGO) reduced the computational effort. The hydrodynamic calm water ship resistance defined the objective function. Compared with the original hull, wave resistance of the optimal hull was significantly reduced for the ship at Froude numbers corresponding to its design speeds.","PeriodicalId":191387,"journal":{"name":"Volume 2B: Structures, Safety, and Reliability","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Structures, Safety, and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Using open-source software Dakota, this paper describes the process of generating an optimal parametric hull shape for a generic containership. Selected design variables defined the ship’s hull, and the influence of these variables on calm water resistance was analyzed. Computations of the flow around the hull were obtained from a validated nonlinear potential flow boundary element method. Using the multi-objective optimization algorithm Surrogate Based Global Optimization (SBGO) reduced the computational effort. The hydrodynamic calm water ship resistance defined the objective function. Compared with the original hull, wave resistance of the optimal hull was significantly reduced for the ship at Froude numbers corresponding to its design speeds.
集装箱船的水动力优化
利用开源软件Dakota,本文描述了为通用集装箱船生成最佳参数船体形状的过程。选定的设计变量定义了船体,并分析了这些变量对静水阻力的影响。采用一种经过验证的非线性势流边界元法计算了船体周围的流动。采用多目标优化算法基于代理的全局优化(SBGO)减少了计算量。以静水船舶阻力为目标函数。与原船体相比,优化后的船体在设计航速对应的弗劳德数下的抗浪能力明显降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信