Estimation of the Influence for Different Population Sizes in MA-Based Natural SNP-RFLP Primer Design

Yu-Huei Cheng, Li-Yeh Chuang, Cheng-Hong Yang
{"title":"Estimation of the Influence for Different Population Sizes in MA-Based Natural SNP-RFLP Primer Design","authors":"Yu-Huei Cheng, Li-Yeh Chuang, Cheng-Hong Yang","doi":"10.1109/TAAI.2012.59","DOIUrl":null,"url":null,"abstract":"Single nucleotide polymorphisms (SNPs) are the most common genetic variations that can be genotyped effectively by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Although PCR-RFLP has become the popular technique, search for available restriction enzymes and design of feasible primers for SNP genotyping is still a challenging task. An available restriction enzyme at least must be provided to discriminate a target SNP, and simultaneously a feasible primer pair observes numerous constraints must be given before performing SNP-based PCR-RFLP experiments. Here, we called it \"natural SNP-RFLP primer design\". In the past, a memetic algorithm (MA) was introduced to design natural SNP-RFLP primers, however, the influence of the used population size was not considered. Here, we use different population size to estimate the result of MA-based natural SNP-RFLP primer design. From the test result, we suggested the population size used between 200 and 300 is preferred to provide the natural SNP-RFLP primers.","PeriodicalId":385063,"journal":{"name":"2012 Conference on Technologies and Applications of Artificial Intelligence","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Technologies and Applications of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2012.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Single nucleotide polymorphisms (SNPs) are the most common genetic variations that can be genotyped effectively by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Although PCR-RFLP has become the popular technique, search for available restriction enzymes and design of feasible primers for SNP genotyping is still a challenging task. An available restriction enzyme at least must be provided to discriminate a target SNP, and simultaneously a feasible primer pair observes numerous constraints must be given before performing SNP-based PCR-RFLP experiments. Here, we called it "natural SNP-RFLP primer design". In the past, a memetic algorithm (MA) was introduced to design natural SNP-RFLP primers, however, the influence of the used population size was not considered. Here, we use different population size to estimate the result of MA-based natural SNP-RFLP primer design. From the test result, we suggested the population size used between 200 and 300 is preferred to provide the natural SNP-RFLP primers.
基于ma的天然SNP-RFLP引物设计中不同种群大小影响的估计
单核苷酸多态性(snp)是最常见的遗传变异,可以通过聚合酶链反应-限制性片段长度多态性(PCR-RFLP)有效地进行基因分型。虽然PCR-RFLP已经成为一种流行的技术,但寻找可用的限制性内切酶和设计可行的引物进行SNP基因分型仍然是一项具有挑战性的任务。在进行基于SNP的PCR-RFLP实验之前,必须至少提供一个可用的限制性内切酶来区分目标SNP,同时必须给出一个可行的引物对,观察到许多约束条件。在这里,我们称之为“天然SNP-RFLP引物设计”。过去,在设计天然SNP-RFLP引物时,通常采用模因算法(memetic algorithm, MA),但未考虑使用群体大小的影响。在这里,我们使用不同的种群大小来估计基于ma的天然SNP-RFLP引物设计的结果。从测试结果来看,我们建议使用200 ~ 300个群体大小来提供天然SNP-RFLP引物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信