Proposal for a function generator and extrapolation analysis

Julian Belz, O. Nelles
{"title":"Proposal for a function generator and extrapolation analysis","authors":"Julian Belz, O. Nelles","doi":"10.1109/INISTA.2015.7276762","DOIUrl":null,"url":null,"abstract":"We propose a polynomial-based function generator to support decision-making in the context of experimental modeling (identification). The function generator tries to imitate regression problems in engineering applications. Stochastic elements ensure high variability between generated functions, while the user is able to choose a general complexity level defined by the strength of the nonlinearity and the order of interactions. An extension to overcome unfavorable properties of the polynomial-based structure is made. The ability to generate an arbitrary amount of test functions offers the possibility to statistically secure decisions in the development of algorithms or for the modeling task at hand. To demonstrate the abilities of our proposed function generator, it is utilized to pick a strategy for the design of experiments that should be used for the metamodeling of a centrifugal fan. We show, that for the application at hand the inclusion of all corners in the experimental design is destructive for the meta model's generalization performance.","PeriodicalId":136707,"journal":{"name":"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2015.7276762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose a polynomial-based function generator to support decision-making in the context of experimental modeling (identification). The function generator tries to imitate regression problems in engineering applications. Stochastic elements ensure high variability between generated functions, while the user is able to choose a general complexity level defined by the strength of the nonlinearity and the order of interactions. An extension to overcome unfavorable properties of the polynomial-based structure is made. The ability to generate an arbitrary amount of test functions offers the possibility to statistically secure decisions in the development of algorithms or for the modeling task at hand. To demonstrate the abilities of our proposed function generator, it is utilized to pick a strategy for the design of experiments that should be used for the metamodeling of a centrifugal fan. We show, that for the application at hand the inclusion of all corners in the experimental design is destructive for the meta model's generalization performance.
一个函数生成器和外推分析的建议
我们提出了一个基于多项式的函数生成器,以支持在实验建模(识别)背景下的决策。函数生成器试图模拟工程应用中的回归问题。随机元素确保了生成函数之间的高度可变性,而用户可以选择由非线性强度和交互顺序定义的一般复杂性水平。为克服基于多项式的结构的不利性质,提出了一种推广方法。生成任意数量的测试函数的能力为算法开发或手头的建模任务提供了统计安全决策的可能性。为了证明我们提出的函数生成器的能力,它被用来选择一种策略来设计应该用于离心风机元建模的实验。我们表明,对于手头的应用程序,在实验设计中包含所有角落对元模型的泛化性能是破坏性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信