Passivity of Inertial Neural Networks with Delays on Time Scales

Qiang Xiao, Lingyu Wang, Tingwen Huang
{"title":"Passivity of Inertial Neural Networks with Delays on Time Scales","authors":"Qiang Xiao, Lingyu Wang, Tingwen Huang","doi":"10.1109/CIS.2017.00048","DOIUrl":null,"url":null,"abstract":"This paper deals with the passivity problem of inertial neural networks (INNs) with discrete delays on time scales. By one linear variable transformation, one passivity criterion is obtained based on the calculus of time scale and LMI techniques Furthermore, two particular criteria for the corresponding continuous and discrete time INNs are derived. Some numerical examples are given to show the validity of the obtained results. The time scale scheme offers results that hold for continuous-time systems, discrete-time systems, and the systems that involve on time intervals.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the passivity problem of inertial neural networks (INNs) with discrete delays on time scales. By one linear variable transformation, one passivity criterion is obtained based on the calculus of time scale and LMI techniques Furthermore, two particular criteria for the corresponding continuous and discrete time INNs are derived. Some numerical examples are given to show the validity of the obtained results. The time scale scheme offers results that hold for continuous-time systems, discrete-time systems, and the systems that involve on time intervals.
时间尺度上时滞惯性神经网络的无源性
研究时间尺度上具有离散延迟的惯性神经网络的无源性问题。通过一次线性变量变换,基于时间尺度演算和LMI技术得到了一个无源准则,并推导出相应连续和离散时间惯性网络的两个特殊准则。通过数值算例验证了所得结果的有效性。时间尺度方案提供的结果适用于连续时间系统、离散时间系统和涉及时间间隔的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信