Finite frequency domain design of dynamic controllers for differential linear repetitive processes

W. Paszke, E. Rogers, K. Gałkowski
{"title":"Finite frequency domain design of dynamic controllers for differential linear repetitive processes","authors":"W. Paszke, E. Rogers, K. Gałkowski","doi":"10.1109/ACC.2013.6580321","DOIUrl":null,"url":null,"abstract":"Repetitive processes make a series of sweeps, or passes, through dynamics defined over a finite duration. One application area is iterative learning control where the stability theory for these processes can be used for design but this involves frequency attenuation over the complete frequency spectrum. This paper develops a new set of conditions where the stability property is only enforced over a finite frequency range. These conditions are developed using the generalized Kalman-Yakubovich-Popov lemma and can be implemented as a set of linear matrix inequalities. An extension to enable stabilizing control law design with additional applications relevant performance specifications, if required, is also developed.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Repetitive processes make a series of sweeps, or passes, through dynamics defined over a finite duration. One application area is iterative learning control where the stability theory for these processes can be used for design but this involves frequency attenuation over the complete frequency spectrum. This paper develops a new set of conditions where the stability property is only enforced over a finite frequency range. These conditions are developed using the generalized Kalman-Yakubovich-Popov lemma and can be implemented as a set of linear matrix inequalities. An extension to enable stabilizing control law design with additional applications relevant performance specifications, if required, is also developed.
微分线性重复过程动态控制器的有限频域设计
重复过程在有限持续时间内通过动态定义进行一系列扫描或传递。一个应用领域是迭代学习控制,其中这些过程的稳定性理论可以用于设计,但这涉及到整个频谱上的频率衰减。本文提出了一组新的条件,这些条件只在有限的频率范围内具有稳定性。这些条件是利用广义卡尔曼-雅库博维奇-波波夫引理推导出来的,并且可以实现为一组线性矩阵不等式。如果需要,还开发了一个扩展,使稳定的控制律设计与其他应用相关的性能规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信