Efficient Multi-Channel Simulation of Wireless Communications

Fabian Bronner, C. Sommer
{"title":"Efficient Multi-Channel Simulation of Wireless Communications","authors":"Fabian Bronner, C. Sommer","doi":"10.1109/VNC.2018.8628350","DOIUrl":null,"url":null,"abstract":"Simulation is a key tool for studying new system designs, but its scalability is often limited by the complexity of underlying models. We investigate to what degree different channel models – in particular differently-complex signal representations and loss models – impact simulation performance. Measurements reveal that, if all effects relevant to typical vehicular network simulations are to be captured, use of a highly efficient signal representation that can exploit modern CPU features allows to cut its performance impact by an order of magnitude. Yet, measurements also reveal that in typical vehicular network simulations, runtime performance is dominated by that of loss modeling instead. To address this issue, we also present a universal approach that can speed up loss modeling. We show that this approach can improve the overall runtime performance of simulations by more than an order of magnitude with no loss in precision.","PeriodicalId":335017,"journal":{"name":"2018 IEEE Vehicular Networking Conference (VNC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2018.8628350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Simulation is a key tool for studying new system designs, but its scalability is often limited by the complexity of underlying models. We investigate to what degree different channel models – in particular differently-complex signal representations and loss models – impact simulation performance. Measurements reveal that, if all effects relevant to typical vehicular network simulations are to be captured, use of a highly efficient signal representation that can exploit modern CPU features allows to cut its performance impact by an order of magnitude. Yet, measurements also reveal that in typical vehicular network simulations, runtime performance is dominated by that of loss modeling instead. To address this issue, we also present a universal approach that can speed up loss modeling. We show that this approach can improve the overall runtime performance of simulations by more than an order of magnitude with no loss in precision.
无线通信的高效多信道仿真
仿真是研究新系统设计的关键工具,但其可扩展性往往受到底层模型复杂性的限制。我们研究了不同的信道模型-特别是不同复杂的信号表示和损耗模型-对仿真性能的影响程度。测量表明,如果要捕获与典型车辆网络模拟相关的所有影响,则使用可以利用现代CPU功能的高效信号表示可以将其性能影响降低一个数量级。然而,测量结果也表明,在典型的车辆网络模拟中,运行时性能主要由损失建模的性能主导。为了解决这个问题,我们还提出了一种可以加速损失建模的通用方法。我们表明,这种方法可以在不损失精度的情况下将模拟的整体运行时性能提高一个数量级以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信