Nonlinear system modeling based on KPCA and MKSVM

Zhiyong Du, Xianfang Wang, Liyuan Zheng, Zhulin Zheng
{"title":"Nonlinear system modeling based on KPCA and MKSVM","authors":"Zhiyong Du, Xianfang Wang, Liyuan Zheng, Zhulin Zheng","doi":"10.1109/CCCM.2009.5268039","DOIUrl":null,"url":null,"abstract":"Kernels are employed in Support Vector Machines (SVM) to map the nonlinear model into a higher dimensional feature space where the linear learning is adopted. Every kernel has its advantages and disadvantages. Preferably, the ‘good’ characteristics of two or more kernels should be combined. In this paper, the mathematical formulation of multiple kernel learning is given. To enhance the robust regression of the algorithm, KPCA is used for the support vectors' reduced process. Through the implementation for average molecular weight in polyacrylonitrile productive process, it demonstrates the good performance of the proposed method compared to single kernel.","PeriodicalId":268670,"journal":{"name":"2009 ISECS International Colloquium on Computing, Communication, Control, and Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 ISECS International Colloquium on Computing, Communication, Control, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCM.2009.5268039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Kernels are employed in Support Vector Machines (SVM) to map the nonlinear model into a higher dimensional feature space where the linear learning is adopted. Every kernel has its advantages and disadvantages. Preferably, the ‘good’ characteristics of two or more kernels should be combined. In this paper, the mathematical formulation of multiple kernel learning is given. To enhance the robust regression of the algorithm, KPCA is used for the support vectors' reduced process. Through the implementation for average molecular weight in polyacrylonitrile productive process, it demonstrates the good performance of the proposed method compared to single kernel.
基于KPCA和MKSVM的非线性系统建模
支持向量机(SVM)利用核函数将非线性模型映射到高维特征空间,并采用线性学习。每个内核都有其优点和缺点。最好将两个或多个内核的“好”特性结合起来。本文给出了多核学习的数学表达式。为了增强算法的鲁棒性,在支持向量的约简过程中使用了KPCA。通过对聚丙烯腈生产过程中平均分子量的实现,证明了该方法与单核方法相比具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信