Syna Sreng, Noppadol Maneerat, D. Isarakorn, K. Hamamoto, Ronakorn Panjaphongse
{"title":"Primary screening of diabetic retinopathy based on integrating morphological operation and support vector machine","authors":"Syna Sreng, Noppadol Maneerat, D. Isarakorn, K. Hamamoto, Ronakorn Panjaphongse","doi":"10.1109/ICIIBMS.2017.8279750","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy is one of the most frequent causes of blindness due to diabetes. Primary screening is essential due to prerequisite step toward the diagnosis of diabetic retinopathy in order to prevent vision loss or blindness. This paper presents the methods to discriminate between healthy images and diabetic retinopathy images on the retinal images. The proposed method involves three main steps. Initially, the image is preprocessed to remove small noises and enhance the contrast of the image. Secondly, Kirsch edge detection is utilized to detect the bright lesions. Subsequently, the red lesions are detected depending on top-hat morphological filtering methods. Then the bright and dark lesions are combined by using logical AND operator. In order to be left only pathological signs, the noises near the vicinity of the optic disc and blood vessels are further removed using blob analysis. Finally, morphological features are extracted and fed to the SVM classifier. The proposed method was evaluated with three datasets containing 229 images. It achieved the accuracy of 90%, sensitivity of 86.33% and specificity of 98.55% with the average computational time 8 seconds per image. The method is simple and fast, easy to implement and the result is promising.","PeriodicalId":122969,"journal":{"name":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2017.8279750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Diabetic retinopathy is one of the most frequent causes of blindness due to diabetes. Primary screening is essential due to prerequisite step toward the diagnosis of diabetic retinopathy in order to prevent vision loss or blindness. This paper presents the methods to discriminate between healthy images and diabetic retinopathy images on the retinal images. The proposed method involves three main steps. Initially, the image is preprocessed to remove small noises and enhance the contrast of the image. Secondly, Kirsch edge detection is utilized to detect the bright lesions. Subsequently, the red lesions are detected depending on top-hat morphological filtering methods. Then the bright and dark lesions are combined by using logical AND operator. In order to be left only pathological signs, the noises near the vicinity of the optic disc and blood vessels are further removed using blob analysis. Finally, morphological features are extracted and fed to the SVM classifier. The proposed method was evaluated with three datasets containing 229 images. It achieved the accuracy of 90%, sensitivity of 86.33% and specificity of 98.55% with the average computational time 8 seconds per image. The method is simple and fast, easy to implement and the result is promising.