Optimum one-bit quantization

G. Alirezaei, R. Mathar
{"title":"Optimum one-bit quantization","authors":"G. Alirezaei, R. Mathar","doi":"10.1109/ITWF.2015.7360795","DOIUrl":null,"url":null,"abstract":"This paper deals with discrete input one-bit output quantization. A discrete input signal is subject to additive noise and is then quantized to zero or one by comparison with a threshold q. For finitely many fixed support points and fixed threshold q we first determine the mutual information of this channel. The capacity-achieving input distribution is shown to be concentrated on merely two extreme support points. Furthermore, an elegant representations of the corresponding probabilities is found. Finally, we set out to determine the optimum threshold q, which is an extremely hard problem. By means of graphical representations a completely different behavior of the objective function is revealed, depending on the choice of parameters and the noise distribution.","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"668 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper deals with discrete input one-bit output quantization. A discrete input signal is subject to additive noise and is then quantized to zero or one by comparison with a threshold q. For finitely many fixed support points and fixed threshold q we first determine the mutual information of this channel. The capacity-achieving input distribution is shown to be concentrated on merely two extreme support points. Furthermore, an elegant representations of the corresponding probabilities is found. Finally, we set out to determine the optimum threshold q, which is an extremely hard problem. By means of graphical representations a completely different behavior of the objective function is revealed, depending on the choice of parameters and the noise distribution.
最佳的位量化
本文研究了离散输入位输出的量化问题。一个离散输入信号受到加性噪声的影响,然后通过与阈值q的比较被量化为零或一。对于有限多个固定支撑点和固定阈值q,我们首先确定该信道的互信息。实现能力的投入分布仅集中在两个极端支撑点上。此外,还找到了相应概率的优雅表示。最后,我们着手确定最优阈值q,这是一个极其困难的问题。通过图形表示,揭示了目标函数的完全不同的行为,这取决于参数的选择和噪声分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信