Concepts encoding via knowledge-guided self-attention networks

Kunnan Geng, Xin Li, Wenyao Zhang
{"title":"Concepts encoding via knowledge-guided self-attention networks","authors":"Kunnan Geng, Xin Li, Wenyao Zhang","doi":"10.1117/12.2644388","DOIUrl":null,"url":null,"abstract":"With the growth of digital data created by us, a large number of deep learning models have been proposed for data mining. Representation learning offers an exciting avenue to address data mining demands by embedding data into feature space. In the healthcare field, most existing methods are proposed to mine electronic health records (EHR) data by learning medical concept representations. Despite the vigorous development of this field, we find the contextual information of medical concepts has always been overlooked, which is important to represent these concepts. Given these limitations, we design a novel medical concept representation method, which is equipped with a self-attention mechanism to learn contextual representation from EHR data and prior knowledge. Extensive experiments on medication recommendation tasks verify the designed modules are consistently beneficial to model performance.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growth of digital data created by us, a large number of deep learning models have been proposed for data mining. Representation learning offers an exciting avenue to address data mining demands by embedding data into feature space. In the healthcare field, most existing methods are proposed to mine electronic health records (EHR) data by learning medical concept representations. Despite the vigorous development of this field, we find the contextual information of medical concepts has always been overlooked, which is important to represent these concepts. Given these limitations, we design a novel medical concept representation method, which is equipped with a self-attention mechanism to learn contextual representation from EHR data and prior knowledge. Extensive experiments on medication recommendation tasks verify the designed modules are consistently beneficial to model performance.
通过知识引导的自注意网络进行概念编码
随着我们创造的数字数据的增长,大量的深度学习模型被提出用于数据挖掘。表示学习通过将数据嵌入特征空间,为解决数据挖掘需求提供了一条令人兴奋的途径。在医疗领域,大多数现有的方法都是通过学习医学概念表示来挖掘电子健康记录(EHR)数据。尽管这一领域蓬勃发展,但我们发现医学概念的语境信息一直被忽视,而表达这些概念的语境信息很重要。鉴于这些局限性,我们设计了一种新的医学概念表示方法,该方法配备了自注意机制,从电子病历数据和先验知识中学习上下文表示。对药物推荐任务的大量实验验证了所设计的模块始终有利于模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信