Hirofumi Sasaki, Yasunori Yagi, T. Kageyama, Doohwan Lee
{"title":"Implementation and Evaluation of sub- THz OAM Multiplexing Transmission","authors":"Hirofumi Sasaki, Yasunori Yagi, T. Kageyama, Doohwan Lee","doi":"10.1109/iccworkshops53468.2022.9814588","DOIUrl":null,"url":null,"abstract":"This paper presents orbital angular momentum (OAM) multiplexing transmission with Butler matrices implemented on a sub-terahertz (sub- THz) band for the first ever to our best knowledge. Sub- THz bands enable us to utilize a wide frequency bandwidth for high-capacity wireless transmission. However, the baud rate becomes extremely high as the bandwidth widens, so digital spatial equalization becomes a significant hurdle for implementation. We therefore consider it practical to move part of the function over to analog devices. A Butler matrix is an analog device that can perform discrete Fourier transform (DFT) calculations, and a combination of the Butler matrix and uniform circular array (UCA) can be used to perform the generation and separation of OAM waves. In this paper, we present 4×4 Butler matrices for the generation and separation of four OAM waves (OAM modes 0, ±1, 2) and demonstrate a physical layer data rate of more than 100 Gbit/s for OAM multiplexing transmission over a 10-GHz bandwidth on a sub-THz band.","PeriodicalId":102261,"journal":{"name":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccworkshops53468.2022.9814588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents orbital angular momentum (OAM) multiplexing transmission with Butler matrices implemented on a sub-terahertz (sub- THz) band for the first ever to our best knowledge. Sub- THz bands enable us to utilize a wide frequency bandwidth for high-capacity wireless transmission. However, the baud rate becomes extremely high as the bandwidth widens, so digital spatial equalization becomes a significant hurdle for implementation. We therefore consider it practical to move part of the function over to analog devices. A Butler matrix is an analog device that can perform discrete Fourier transform (DFT) calculations, and a combination of the Butler matrix and uniform circular array (UCA) can be used to perform the generation and separation of OAM waves. In this paper, we present 4×4 Butler matrices for the generation and separation of four OAM waves (OAM modes 0, ±1, 2) and demonstrate a physical layer data rate of more than 100 Gbit/s for OAM multiplexing transmission over a 10-GHz bandwidth on a sub-THz band.