An experimental comparison of the EM algorithm versus general optimization for combined image identification and restoration

J. Woods, S. Rastogi
{"title":"An experimental comparison of the EM algorithm versus general optimization for combined image identification and restoration","authors":"J. Woods, S. Rastogi","doi":"10.1109/MDSP.1989.97104","DOIUrl":null,"url":null,"abstract":"Summary form only given. The problem of learning the parameters needed for image restoration from the given noisy and blurred image has been addressed. The asymptotically optimal approach of finding the maximum-likelihood estimate of the parameters and then using this value of the parameter to construct the restoration filter has been taken. One way to do this is to iteratively solve the nonlinear problem of maximizing the a posteriori probability of the image given the blurred observations and also the unknown parameters. The ellipsoidal algorithm and the expectation-maximization (EM) algorithm have been used for this purpose. An experimental comparison of these two methods for parametrically restoring images when the parameters are not known a priori has been made.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.97104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. The problem of learning the parameters needed for image restoration from the given noisy and blurred image has been addressed. The asymptotically optimal approach of finding the maximum-likelihood estimate of the parameters and then using this value of the parameter to construct the restoration filter has been taken. One way to do this is to iteratively solve the nonlinear problem of maximizing the a posteriori probability of the image given the blurred observations and also the unknown parameters. The ellipsoidal algorithm and the expectation-maximization (EM) algorithm have been used for this purpose. An experimental comparison of these two methods for parametrically restoring images when the parameters are not known a priori has been made.<>
EM算法与一般优化算法在组合图像识别与恢复中的实验比较
只提供摘要形式。解决了从给定的噪声和模糊图像中学习图像恢复所需参数的问题。采用渐近最优方法求参数的最大似然估计,然后利用该参数值构造恢复滤波器。这样做的一种方法是迭代解决非线性问题,即在给定模糊观测和未知参数的情况下,最大化图像的后验概率。椭球算法和期望最大化(EM)算法已被用于此目的。在先验参数未知的情况下,对这两种方法进行了参数恢复的实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信