Faster Gated Recurrent Units via Conditional Computation

Andrew S. Davis, I. Arel
{"title":"Faster Gated Recurrent Units via Conditional Computation","authors":"Andrew S. Davis, I. Arel","doi":"10.1109/ICMLA.2016.0165","DOIUrl":null,"url":null,"abstract":"In this work, we apply the idea of conditional computation to the gated recurrent unit (GRU), a type of recurrent activation function. With slight modifications to the GRU, the number of floating point operations required to calculate the feed-forward pass through the network may be significantly reduced. This allows for more rapid computation, enabling a trade-off between model accuracy and model speed. Such a trade-off may be useful in a scenario where real-time performance is required, allowing for powerful recurrent models to be deployed on compute-limited devices.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we apply the idea of conditional computation to the gated recurrent unit (GRU), a type of recurrent activation function. With slight modifications to the GRU, the number of floating point operations required to calculate the feed-forward pass through the network may be significantly reduced. This allows for more rapid computation, enabling a trade-off between model accuracy and model speed. Such a trade-off may be useful in a scenario where real-time performance is required, allowing for powerful recurrent models to be deployed on compute-limited devices.
通过条件计算的更快门控循环单元
在这项工作中,我们将条件计算的思想应用于门控循环单元(GRU),这是一种循环激活函数。对GRU稍加修改,计算通过网络的前馈传递所需的浮点运算次数可能会显著减少。这允许更快速的计算,实现模型精度和模型速度之间的权衡。这种权衡在需要实时性能的场景中可能很有用,允许在计算有限的设备上部署强大的循环模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信