Smartphone-based transport mode detection for elderly care

N. Cardoso, João Madureira, N. Pereira
{"title":"Smartphone-based transport mode detection for elderly care","authors":"N. Cardoso, João Madureira, N. Pereira","doi":"10.1109/HealthCom.2016.7749465","DOIUrl":null,"url":null,"abstract":"Smartphones are everywhere, and they are a very attractive platform to perform unobtrusive monitoring of users. In this work, we use common features of modern smartphones to build a human activity recognition (HAR) system for elderly care. We have built a classifier that detects the transport mode of the user including whether an individual is inactive, walking, in bus, in car, in train or in metro. We evaluated our approach using over 24 hours of transportation data from a group of 15 individuals. Our tests show that our classifier can detect the transportation mode with over 90% accuracy.","PeriodicalId":167022,"journal":{"name":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2016.7749465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Smartphones are everywhere, and they are a very attractive platform to perform unobtrusive monitoring of users. In this work, we use common features of modern smartphones to build a human activity recognition (HAR) system for elderly care. We have built a classifier that detects the transport mode of the user including whether an individual is inactive, walking, in bus, in car, in train or in metro. We evaluated our approach using over 24 hours of transportation data from a group of 15 individuals. Our tests show that our classifier can detect the transportation mode with over 90% accuracy.
基于智能手机的养老交通方式检测
智能手机无处不在,它们是一个非常有吸引力的平台,可以对用户进行不显眼的监控。在这项工作中,我们利用现代智能手机的共同特征来构建老年人护理的人类活动识别(HAR)系统。我们已经建立了一个分类器,可以检测用户的交通方式,包括个人是否不活动,步行,乘坐公共汽车,汽车,火车或地铁。我们使用15个人的24小时交通数据来评估我们的方法。我们的测试表明,我们的分类器可以以90%以上的准确率检测运输方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信