Estimation and filtering by reversible jump MCMC for a doubly stochastic Poisson model for ultra-high-frequency financial data

S. Centanni, M. Minozzo
{"title":"Estimation and filtering by reversible jump MCMC for a doubly stochastic Poisson model for ultra-high-frequency financial data","authors":"S. Centanni, M. Minozzo","doi":"10.1191/1471082X06st112oa","DOIUrl":null,"url":null,"abstract":"We propose a modeling framework for ultra-high-frequency data on financial asset price movements. The models proposed belong to the class of the doubly stochastic Poisson processes with marks and allow an interpretation of the changes in price volatility and trading activity in terms of news or information arrival. Assuming that the intensity process underlying event arrivals is unobserved by market agents, we propose a signal extraction (filtering) method based on the reversible jump Markov chain Monte Carlo algorithm. Moreover, given a realization of the price process, inference on the parameters can be performed by appealing to stochastic versions of the expectation-maximization algorithm. The simulation methods proposed will be applied to the computation of hedging strategies and derivative prices.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X06st112oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We propose a modeling framework for ultra-high-frequency data on financial asset price movements. The models proposed belong to the class of the doubly stochastic Poisson processes with marks and allow an interpretation of the changes in price volatility and trading activity in terms of news or information arrival. Assuming that the intensity process underlying event arrivals is unobserved by market agents, we propose a signal extraction (filtering) method based on the reversible jump Markov chain Monte Carlo algorithm. Moreover, given a realization of the price process, inference on the parameters can be performed by appealing to stochastic versions of the expectation-maximization algorithm. The simulation methods proposed will be applied to the computation of hedging strategies and derivative prices.
超高频金融数据双随机泊松模型的可逆跳变MCMC估计与滤波
我们为金融资产价格变动的超高频数据提出了一个建模框架。所提出的模型属于带标记的双随机泊松过程,并允许根据新闻或信息到达来解释价格波动和交易活动的变化。假设市场主体无法观察到事件到达的强度过程,提出了一种基于可逆跳跃马尔可夫链蒙特卡罗算法的信号提取(滤波)方法。此外,给定价格过程的实现,对参数的推断可以通过调用期望最大化算法的随机版本来执行。所提出的模拟方法将应用于对冲策略和衍生品价格的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信