A System for Handwritten and Printed Text Classification

B. Garlapati, S. Chalamala
{"title":"A System for Handwritten and Printed Text Classification","authors":"B. Garlapati, S. Chalamala","doi":"10.1109/UKSim.2017.37","DOIUrl":null,"url":null,"abstract":"An optical character recognition (OCR) system recognizes either printed or handwritten text. Hence it is required to seperate machine printed text from handwritten text in scanned documents before feeding it to a OCR system. We can discriminate these two types of text word images by their visual impression and shape structures. The intensity values distribution features gives us the visual impression and the shapes can be represented by the structural features. This paper proposes an approach for machine print and handwritten text classification at word level using intensity and shape structural features of scanned text. The proposed method achieved impressive classification efficiency on IAM dataset.","PeriodicalId":309250,"journal":{"name":"2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim)","volume":"31 14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSim.2017.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

An optical character recognition (OCR) system recognizes either printed or handwritten text. Hence it is required to seperate machine printed text from handwritten text in scanned documents before feeding it to a OCR system. We can discriminate these two types of text word images by their visual impression and shape structures. The intensity values distribution features gives us the visual impression and the shapes can be represented by the structural features. This paper proposes an approach for machine print and handwritten text classification at word level using intensity and shape structural features of scanned text. The proposed method achieved impressive classification efficiency on IAM dataset.
手写和印刷文本分类系统
光学字符识别(OCR)系统可以识别打印或手写文本。因此,在将扫描文档输入OCR系统之前,需要将机器打印的文本与手写的文本分开。我们可以通过视觉印象和形状结构来区分这两种类型的文本词图像。强度值分布特征给我们视觉印象,形状可以用结构特征来表示。本文提出了一种利用扫描文本的强度和形状结构特征对机器打印和手写文本进行词级分类的方法。该方法在IAM数据集上取得了令人印象深刻的分类效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信