{"title":"Optimal refueling strategies for a mixed-vehicle fleet","authors":"A. Mehrez, H. Stern","doi":"10.1002/NAV.3800320211","DOIUrl":null,"url":null,"abstract":"The problem treated here involves a mixed fleet of vehicles comprising two types of vehicles: K1 tanker‐type vehicles capable of refueling themselves and other vehicles, and K2 nontanker vehicles incapable of refueling. The two groups of vehicles have different fuel capacities as well as different fuel consumption rates. The problem is to find the tanker refueling sequence that maximizes the range attainable for the K2 nontankers. A tanker refueling sequence is a partition of the tankers into m subsets (2 ≤ m ≤ K1). A given sequence of the partition provides a realization of the number of tankers participating in each successive refueling operation. The problem is first formulated as a nonlinear mixed‐integer program and reduced to a linear program for a fixed sequence which may be solved by a simple recursive procedure. It is proven that a “unit refueling sequence” composed of one tanker refueling at each of K1 refueling operations is optimal. In addition, the problem of designing the “minimum fleet” (minimum number of tankers) required for a given set of K2 nontankers to attain maximal range is resolved. Also studied are extensions to the problem with a constraint on the number of refueling operations, different nontanker recovery base geometry, and refueling on the return trip.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800320211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The problem treated here involves a mixed fleet of vehicles comprising two types of vehicles: K1 tanker‐type vehicles capable of refueling themselves and other vehicles, and K2 nontanker vehicles incapable of refueling. The two groups of vehicles have different fuel capacities as well as different fuel consumption rates. The problem is to find the tanker refueling sequence that maximizes the range attainable for the K2 nontankers. A tanker refueling sequence is a partition of the tankers into m subsets (2 ≤ m ≤ K1). A given sequence of the partition provides a realization of the number of tankers participating in each successive refueling operation. The problem is first formulated as a nonlinear mixed‐integer program and reduced to a linear program for a fixed sequence which may be solved by a simple recursive procedure. It is proven that a “unit refueling sequence” composed of one tanker refueling at each of K1 refueling operations is optimal. In addition, the problem of designing the “minimum fleet” (minimum number of tankers) required for a given set of K2 nontankers to attain maximal range is resolved. Also studied are extensions to the problem with a constraint on the number of refueling operations, different nontanker recovery base geometry, and refueling on the return trip.