Are SKOS concept schemes ready for multilingual retrieval applications?

Diana Tănase, E. Kapetanios
{"title":"Are SKOS concept schemes ready for multilingual retrieval applications?","authors":"Diana Tănase, E. Kapetanios","doi":"10.1145/2362499.2362520","DOIUrl":null,"url":null,"abstract":"This article describes our approach to accessing Knowledge Organization Systems expressed using the Simple Knowledge Organization System (SKOS) data model. We share the view that the Web is becoming a multilingual lexical resource and a distribution infrastructure for knowledge resources. We aim to tap into this for the particular use case of Cross-Language Information Retrieval systems. The SKOS framework allows the description of monolingual or multilingual thesauri, controlled vocabularies and other classification systems in a simple machine-understandable representation. It has support for decentralized distribution on the Web of any resource described with it and includes mechanisms to interconnect different concept schemes. Yet, when building our prototype CLIR system different processes require more than the existing content of a SKOS resource: concept descriptions, labels and basic inter-concept relations. For example the SKOS concept indexing phase entails identifying potential occurrences of a SKOS concept in a text and to disambiguate based on the semantics referenced to in the overall SKOS scheme. By design, the SKOS data model does not formally define semantics of its concepts thus we have built a set of three algorithms that help generate a multilingual dataset linking to the original SKOS dataset and providing more details about the lexical entities that describe concepts. This new dataset contains specific RDF triples that aid concept identification, disambiguation and translation in CLIR.","PeriodicalId":275036,"journal":{"name":"International Conference on Semantic Systems","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2362499.2362520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article describes our approach to accessing Knowledge Organization Systems expressed using the Simple Knowledge Organization System (SKOS) data model. We share the view that the Web is becoming a multilingual lexical resource and a distribution infrastructure for knowledge resources. We aim to tap into this for the particular use case of Cross-Language Information Retrieval systems. The SKOS framework allows the description of monolingual or multilingual thesauri, controlled vocabularies and other classification systems in a simple machine-understandable representation. It has support for decentralized distribution on the Web of any resource described with it and includes mechanisms to interconnect different concept schemes. Yet, when building our prototype CLIR system different processes require more than the existing content of a SKOS resource: concept descriptions, labels and basic inter-concept relations. For example the SKOS concept indexing phase entails identifying potential occurrences of a SKOS concept in a text and to disambiguate based on the semantics referenced to in the overall SKOS scheme. By design, the SKOS data model does not formally define semantics of its concepts thus we have built a set of three algorithms that help generate a multilingual dataset linking to the original SKOS dataset and providing more details about the lexical entities that describe concepts. This new dataset contains specific RDF triples that aid concept identification, disambiguation and translation in CLIR.
SKOS概念方案是否为多语言检索应用做好了准备?
本文描述了我们访问使用简单知识组织系统(SKOS)数据模型表示的知识组织系统的方法。我们都认为,Web正在成为多语言词汇资源和知识资源的分发基础设施。我们的目标是为跨语言信息检索系统的特定用例挖掘这一点。SKOS框架允许用简单的机器可理解的表示描述单语言或多语言辞典、受控词汇表和其他分类系统。它支持在Web上对任何用它描述的资源进行分散分发,并包括连接不同概念方案的机制。然而,在构建我们的原型CLIR系统时,不同的过程需要的不仅仅是SKOS资源的现有内容:概念描述、标签和基本的概念间关系。例如,SKOS概念索引阶段需要识别文本中可能出现的SKOS概念,并根据整个SKOS方案中引用的语义消除歧义。根据设计,SKOS数据模型没有正式定义其概念的语义,因此我们构建了一组三种算法,这些算法帮助生成链接到原始SKOS数据集的多语言数据集,并提供有关描述概念的词法实体的更多细节。这个新的数据集包含特定的RDF三元组,有助于在CLIR中识别概念、消除歧义和翻译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信