Keen-Means: A Web Page Clustering Tool Based on an Self-Adjustable K-Means Algorithm

Chun-Hsiung Tseng, Yung-Hui Chen, C. Chuang, Jia Hua Wu, Yi Syuan Yang, Yaning Liang
{"title":"Keen-Means: A Web Page Clustering Tool Based on an Self-Adjustable K-Means Algorithm","authors":"Chun-Hsiung Tseng, Yung-Hui Chen, C. Chuang, Jia Hua Wu, Yi Syuan Yang, Yaning Liang","doi":"10.1109/U-MEDIA.2014.44","DOIUrl":null,"url":null,"abstract":"Search engines usually do their jobs well. However, due to the fact that most existing search algorithms are keyword-based, search engines may not work as expected in some scenarios when ambiguity problems are encountered. A possible approach to overcome it is to categorize Web resources in advance. In this research, a k-means variation, the keen-means algorithm, along with its implementation is proposed. The algorithm will dynamically and automatically adjust the k value to achieve better results.","PeriodicalId":174849,"journal":{"name":"2014 7th International Conference on Ubi-Media Computing and Workshops","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Conference on Ubi-Media Computing and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/U-MEDIA.2014.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Search engines usually do their jobs well. However, due to the fact that most existing search algorithms are keyword-based, search engines may not work as expected in some scenarios when ambiguity problems are encountered. A possible approach to overcome it is to categorize Web resources in advance. In this research, a k-means variation, the keen-means algorithm, along with its implementation is proposed. The algorithm will dynamically and automatically adjust the k value to achieve better results.
基于自调节K-Means算法的网页聚类工具
搜索引擎通常会做得很好。然而,由于现有的大多数搜索算法都是基于关键字的,在某些情况下,当遇到歧义问题时,搜索引擎可能无法达到预期的效果。一种可能的解决方法是提前对Web资源进行分类。在本研究中,提出了一种k-means变化,即keen-means算法及其实现。该算法会动态自动调整k值以达到更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信