Intention Detection and Gait Recognition (IDGR) System for Gait Assessment: A Pilot Study

Yogesh Singh, Manan Kher, V. Vashista
{"title":"Intention Detection and Gait Recognition (IDGR) System for Gait Assessment: A Pilot Study","authors":"Yogesh Singh, Manan Kher, V. Vashista","doi":"10.1109/RO-MAN46459.2019.8956299","DOIUrl":null,"url":null,"abstract":"Gait abnormality is the most significant symptom in the neurologically affected patients. To improve their quality of life, it is important to complement and further enhance the existing qualitative gait analysis protocol with a technically sound quantitative paradigm. In this paper, we present a pilot study and the development of a wearable intention detection and gait recognition (IDGR) system. This system comprises a well-established integrated network of microcontrollers and sensors which acts as a diagnostic tool for gait correction. IDGR system provides real-time feedback of the temporal gait parameter on a user interface. Furthermore, this system classifies the subject’s intention - standing still, walking or ascending the stairs using simple logic inherent to an individual’s walking style. It offers reliable tools for functional assessment of the patient’s progress by measuring physical parameters. We conducted an experiment on a healthy participant as a validation of our approach and proof-of-concept.","PeriodicalId":286478,"journal":{"name":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN46459.2019.8956299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Gait abnormality is the most significant symptom in the neurologically affected patients. To improve their quality of life, it is important to complement and further enhance the existing qualitative gait analysis protocol with a technically sound quantitative paradigm. In this paper, we present a pilot study and the development of a wearable intention detection and gait recognition (IDGR) system. This system comprises a well-established integrated network of microcontrollers and sensors which acts as a diagnostic tool for gait correction. IDGR system provides real-time feedback of the temporal gait parameter on a user interface. Furthermore, this system classifies the subject’s intention - standing still, walking or ascending the stairs using simple logic inherent to an individual’s walking style. It offers reliable tools for functional assessment of the patient’s progress by measuring physical parameters. We conducted an experiment on a healthy participant as a validation of our approach and proof-of-concept.
意图检测和步态识别(IDGR)系统的步态评估:一个试点研究
步态异常是神经系统疾病患者最显著的症状。为了提高他们的生活质量,重要的是补充和进一步加强现有的定性步态分析方案与技术上合理的定量范式。在本文中,我们提出了一个可穿戴意图检测和步态识别(IDGR)系统的试点研究和开发。该系统包括一个完善的集成网络的微控制器和传感器,作为诊断工具的步态纠正。IDGR系统在用户界面上提供时间步态参数的实时反馈。此外,该系统使用个人行走方式固有的简单逻辑对受试者的意图进行分类——站立不动、行走或上楼梯。它提供了可靠的工具,通过测量身体参数的功能评估病人的进展。我们在一个健康的参与者身上进行了一个实验,作为对我们的方法和概念验证的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信