An effective method determining the initial cluster centers for K-means for clustering gene expression data

D. Tanir, F. Nuriyeva
{"title":"An effective method determining the initial cluster centers for K-means for clustering gene expression data","authors":"D. Tanir, F. Nuriyeva","doi":"10.1109/UBMK.2017.8093520","DOIUrl":null,"url":null,"abstract":"Clustering is an important tool for analyzing gene expression data. Many clustering algorithms have been proposed for the analysis of gene expression data. In this article we have clustered real life gene expression data via K-Means which is one of clustering algorithms. Also, we have proposed a new method determining the initial cluster centers for K-means. We have compared results of our method with other clustering algorithms. The comparison results show that the K-means algorithm which uses the proposed methods converges to better clustering results than other clustering algorithms.","PeriodicalId":201903,"journal":{"name":"2017 International Conference on Computer Science and Engineering (UBMK)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2017.8093520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Clustering is an important tool for analyzing gene expression data. Many clustering algorithms have been proposed for the analysis of gene expression data. In this article we have clustered real life gene expression data via K-Means which is one of clustering algorithms. Also, we have proposed a new method determining the initial cluster centers for K-means. We have compared results of our method with other clustering algorithms. The comparison results show that the K-means algorithm which uses the proposed methods converges to better clustering results than other clustering algorithms.
一种确定基因表达数据k均值初始聚类中心的有效方法
聚类是分析基因表达数据的重要工具。为了分析基因表达数据,已经提出了许多聚类算法。本文通过聚类算法之一的K-Means对现实生活中的基因表达数据进行聚类。此外,我们还提出了一种确定k均值初始聚类中心的新方法。我们将我们的方法与其他聚类算法的结果进行了比较。对比结果表明,采用该方法的K-means算法的聚类效果优于其他聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信