Discovery of Non-Interesting Attribute in Mining Outliers Pattern

F. Shaari, A. Bakar, A. Hamdan
{"title":"Discovery of Non-Interesting Attribute in Mining Outliers Pattern","authors":"F. Shaari, A. Bakar, A. Hamdan","doi":"10.1109/ICCSA.2007.27","DOIUrl":null,"url":null,"abstract":"An outlier in a dataset is a point or a class of points that is considerably dissimilar to or inconsistent with the remainder of the data. Detection of outliers is important for many applications and has always attracted attention among data mining research community. In this paper, we present a new method in detecting outlier by discovering Non-IntAttrb from the information system (IS). Non-IntAttrb is set of attributes from IS that may contain outliers. We discover the computation of Non-IntAttrb by defining indiscemibility matrix modulo (iDMM) and indiscemibility function modulo(iDFM). We define a measurement calledRSetOF(Rough Set Outlier Factor Value) to detect outlier objects. The experimental results show that our approach is a fast outlier detection method.","PeriodicalId":386960,"journal":{"name":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2007.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An outlier in a dataset is a point or a class of points that is considerably dissimilar to or inconsistent with the remainder of the data. Detection of outliers is important for many applications and has always attracted attention among data mining research community. In this paper, we present a new method in detecting outlier by discovering Non-IntAttrb from the information system (IS). Non-IntAttrb is set of attributes from IS that may contain outliers. We discover the computation of Non-IntAttrb by defining indiscemibility matrix modulo (iDMM) and indiscemibility function modulo(iDFM). We define a measurement calledRSetOF(Rough Set Outlier Factor Value) to detect outlier objects. The experimental results show that our approach is a fast outlier detection method.
异常值模式挖掘中非感兴趣属性的发现
数据集中的异常点是与数据的其余部分相当不相似或不一致的一个点或一类点。异常点检测在许多应用中都很重要,一直是数据挖掘研究界关注的焦点。本文提出了一种通过从信息系统中发现非intattrb来检测离群值的新方法。Non-IntAttrb是来自is的一组可能包含异常值的属性。通过定义不可分辨矩阵模(iDMM)和不可分辨函数模(iDFM),发现了非intattrb的计算方法。我们定义了一个名为drsetof(粗糙集离群因子值)的测量来检测离群对象。实验结果表明,该方法是一种快速的离群点检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信