Electric Network Classifier for Semi-Supervised Learning on Graphs

M. Rikitoku, H. Hirai, K. Murota
{"title":"Electric Network Classifier for Semi-Supervised Learning on Graphs","authors":"M. Rikitoku, H. Hirai, K. Murota","doi":"10.15807/jorsj.50.219","DOIUrl":null,"url":null,"abstract":"We propose a new classifier, named electric network classifiers, for semi-supervised learning on graphs. Our classifier is based on nonlinear electric network theory and classifies data set with respect to the sign of electric potential. Close relationships to C-SVM and graph kernel methods are revealed. Unlike other graph kernel methods, our classifier does not require heavy kernel computations but obtains the potential directly using efficient network flow algorithms. Furthermore, with flexibility of its formulation, our classifier can incorporate various edge characteristics; influence of edge direction, unsymmetric dependence and so on. Therefore, our classifier has the potential to tackle large complex real world problems. Experimental results show that the performance is fairly good compared with the diffusion kernel and other standard methods.","PeriodicalId":377405,"journal":{"name":"IEICE technical report. Speech","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE technical report. Speech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/jorsj.50.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a new classifier, named electric network classifiers, for semi-supervised learning on graphs. Our classifier is based on nonlinear electric network theory and classifies data set with respect to the sign of electric potential. Close relationships to C-SVM and graph kernel methods are revealed. Unlike other graph kernel methods, our classifier does not require heavy kernel computations but obtains the potential directly using efficient network flow algorithms. Furthermore, with flexibility of its formulation, our classifier can incorporate various edge characteristics; influence of edge direction, unsymmetric dependence and so on. Therefore, our classifier has the potential to tackle large complex real world problems. Experimental results show that the performance is fairly good compared with the diffusion kernel and other standard methods.
图上半监督学习的电子网络分类器
我们提出了一种新的分类器,称为电子网络分类器,用于图上的半监督学习。该分类器基于非线性电网络理论,根据电势符号对数据集进行分类。揭示了与C-SVM和图核方法的密切关系。与其他图核方法不同,我们的分类器不需要大量的核计算,而是使用高效的网络流算法直接获得潜力。此外,由于其公式的灵活性,我们的分类器可以包含各种边缘特征;边缘方向的影响,不对称依赖等。因此,我们的分类器有潜力处理大型复杂的现实世界问题。实验结果表明,与扩散核和其他标准方法相比,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信