Neural procedure for microwave MOSFET modelling versus bias and gate length

Z. Marinković, G. Crupi, D. Schreurs, A. Caddemi, V. Markovic
{"title":"Neural procedure for microwave MOSFET modelling versus bias and gate length","authors":"Z. Marinković, G. Crupi, D. Schreurs, A. Caddemi, V. Markovic","doi":"10.1109/TELSKS.2017.8246255","DOIUrl":null,"url":null,"abstract":"In this paper, a neural procedure for development of a microwave bias-dependant MOSFET model versus the gate length is presented. Artificial neural networks are applied to model the small-signal scattering parameters. The developed model is validated through comparison of the simulated S-parameters for three devices differing in the gate length with the measured data in the frequency range up to 40 GHz. The obtained results confirm the achieved good accuracy of the extracted model.","PeriodicalId":206778,"journal":{"name":"2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2017.8246255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a neural procedure for development of a microwave bias-dependant MOSFET model versus the gate length is presented. Artificial neural networks are applied to model the small-signal scattering parameters. The developed model is validated through comparison of the simulated S-parameters for three devices differing in the gate length with the measured data in the frequency range up to 40 GHz. The obtained results confirm the achieved good accuracy of the extracted model.
微波MOSFET建模与偏置和栅极长度的神经程序
本文提出了一种基于栅极长度的微波偏置依赖性MOSFET模型的神经网络方法。采用人工神经网络对小信号散射参数进行建模。通过对三种器件栅极长度不同的模拟s参数与40 GHz频率范围内的实测数据进行比较,验证了所建立的模型的有效性。仿真结果表明,所提取的模型具有较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信