{"title":"Scalable Newton-Krylov-BDDC and FETI-DP Deluxe Solvers for Decoupled Cardiac Reaction-Diffusion Models","authors":"N. Huynh, L. Pavarino, S. Scacchi","doi":"10.23967/WCCM-ECCOMAS.2020.294","DOIUrl":null,"url":null,"abstract":"Abstract. Two parallel Newton-Krylov Balancing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) solvers are analyzed and numerically studied for implicit time discretizations of the Bidomain equations. This system models the cardiac bioelectrical activity and it consists of a degenerate system of two non-linear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of ordinary differential equations (ODEs). A non-linear algebraic system arises from a finite element discretization in space and an implicit discretization in time, based on decoupling the PDEs from the ODEs. Within each Newton iteration, the Jacobian linear system is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented with the recently introduced deluxe scaling of the dual variables. Several parallel numerical tests on Linux clusters confirm a novel polylogarithmic convergence rate bound, showing scalability and quasi-optimality of the proposed solvers.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Two parallel Newton-Krylov Balancing Domain Decomposition by Constraints (BDDC) and Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) solvers are analyzed and numerically studied for implicit time discretizations of the Bidomain equations. This system models the cardiac bioelectrical activity and it consists of a degenerate system of two non-linear reaction-diffusion partial differential equations (PDEs), coupled with a stiff system of ordinary differential equations (ODEs). A non-linear algebraic system arises from a finite element discretization in space and an implicit discretization in time, based on decoupling the PDEs from the ODEs. Within each Newton iteration, the Jacobian linear system is solved by a Krylov method, accelerated by BDDC or FETI-DP preconditioners, both augmented with the recently introduced deluxe scaling of the dual variables. Several parallel numerical tests on Linux clusters confirm a novel polylogarithmic convergence rate bound, showing scalability and quasi-optimality of the proposed solvers.