An improved QoE estimation method based on QoS and affective computing

Lamine Amour, Mohamed-Ikbel Boulabiar, Sami Souihi, A. Mellouk
{"title":"An improved QoE estimation method based on QoS and affective computing","authors":"Lamine Amour, Mohamed-Ikbel Boulabiar, Sami Souihi, A. Mellouk","doi":"10.1109/ISPS.2018.8379009","DOIUrl":null,"url":null,"abstract":"With the massive uses of the video over the world in the last decade, the user perception, commonly called Quality of Experience (QoE) metric; has become the one of the most important topics for the Network services Providers (NsP) and Content service Providers (CsP). In this paper, we present a new QoE estimation method on the client side using Machine Learning methods (ML) based on subjective assessment in a controlled-laboratory environment. The major novel contribution of this study is the combination of Quality of Service (QoS) parameters and Affective Computing (facial expression) to estimate the Mean Opinion Score (MOS) for HTTP YouTube content. An evaluation using a collected subjective dataset indicates that combining QoS and Affective computing provides better prediction performance.","PeriodicalId":294761,"journal":{"name":"2018 International Symposium on Programming and Systems (ISPS)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Programming and Systems (ISPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPS.2018.8379009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

With the massive uses of the video over the world in the last decade, the user perception, commonly called Quality of Experience (QoE) metric; has become the one of the most important topics for the Network services Providers (NsP) and Content service Providers (CsP). In this paper, we present a new QoE estimation method on the client side using Machine Learning methods (ML) based on subjective assessment in a controlled-laboratory environment. The major novel contribution of this study is the combination of Quality of Service (QoS) parameters and Affective Computing (facial expression) to estimate the Mean Opinion Score (MOS) for HTTP YouTube content. An evaluation using a collected subjective dataset indicates that combining QoS and Affective computing provides better prediction performance.
一种改进的基于QoS和情感计算的QoE估计方法
在过去的十年里,随着视频在全球的大量使用,用户感知,通常被称为体验质量(QoE)指标;已成为网络服务提供商(NsP)和内容服务提供商(CsP)最重要的课题之一。在本文中,我们提出了一种在受控实验室环境中使用基于主观评估的机器学习方法(ML)的客户端新的QoE估计方法。本研究的主要新颖贡献是结合服务质量(QoS)参数和情感计算(面部表情)来估计HTTP YouTube内容的平均意见评分(MOS)。利用收集到的主观数据集进行评价,表明QoS和情感计算相结合可以提供更好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信