Efficient bearing fault diagnosis by extracting intrinsic fault information using envelope power spectrum

Md. Rashedul Islam, A. Tushar, Jong-Myon Kim
{"title":"Efficient bearing fault diagnosis by extracting intrinsic fault information using envelope power spectrum","authors":"Md. Rashedul Islam, A. Tushar, Jong-Myon Kim","doi":"10.1109/ICIVPR.2017.7890889","DOIUrl":null,"url":null,"abstract":"Early and efficient fault diagnosis of bearing of industrial motor is a modern demand for reducing unexpected breakdown of industrial process. Extracting the intrinsic fault signature in very early stage is important. In this point of view, this paper proposes a fault diagnosis model of industrial bearing including efficient fault signature extraction technique based on narrow band frequency domain analysis of acoustic emission (AE) signal using envelope power spectrum. To do that, AE signals are collected from defective and non-defective bearings under different rotational speeds from industrial-like experimental environment. Envelope power spectrum is calculated from the AE signal and narrow band root mean square (NBRMS) fault features are extracted from defect frequency ranges of the envelope power spectrum. Finally, the k-nearest neighbor (k-NN) classification algorithm is used for identifying the fault of unknown signal and validating the efficiency of the proposed feature extraction model. The experimental result shows that the proposed model outperforms state-of-art algorithms in terms of classification accuracy.","PeriodicalId":126745,"journal":{"name":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVPR.2017.7890889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Early and efficient fault diagnosis of bearing of industrial motor is a modern demand for reducing unexpected breakdown of industrial process. Extracting the intrinsic fault signature in very early stage is important. In this point of view, this paper proposes a fault diagnosis model of industrial bearing including efficient fault signature extraction technique based on narrow band frequency domain analysis of acoustic emission (AE) signal using envelope power spectrum. To do that, AE signals are collected from defective and non-defective bearings under different rotational speeds from industrial-like experimental environment. Envelope power spectrum is calculated from the AE signal and narrow band root mean square (NBRMS) fault features are extracted from defect frequency ranges of the envelope power spectrum. Finally, the k-nearest neighbor (k-NN) classification algorithm is used for identifying the fault of unknown signal and validating the efficiency of the proposed feature extraction model. The experimental result shows that the proposed model outperforms state-of-art algorithms in terms of classification accuracy.
基于包络功率谱提取轴承固有故障信息的高效故障诊断
对工业电机轴承进行早期、高效的故障诊断是减少工业生产过程意外故障的现代需求。在断层早期提取断层特征非常重要。为此,本文提出了一种基于包络功率谱的声发射信号窄带频域分析的高效故障特征提取技术的工业轴承故障诊断模型。为此,在类似工业的实验环境中,在不同转速下收集缺陷和非缺陷轴承的声发射信号。从声发射信号中计算包络功率谱,从包络功率谱的缺陷频率范围中提取窄带故障特征。最后,利用k近邻(k-NN)分类算法识别未知信号的故障,验证所提特征提取模型的有效性。实验结果表明,该模型在分类精度方面优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信