Markov Decision Processes Specified by Probabilistic Logic Programming: Representation and Solution

T. P. Bueno, D. Mauá, L. N. Barros, Fabio Gagliardi Cozman
{"title":"Markov Decision Processes Specified by Probabilistic Logic Programming: Representation and Solution","authors":"T. P. Bueno, D. Mauá, L. N. Barros, Fabio Gagliardi Cozman","doi":"10.1109/BRACIS.2016.068","DOIUrl":null,"url":null,"abstract":"Probabilistic logic programming combines logic and probability, so as to obtain a rich modeling language. In this work, we extend ProbLog, a popular probabilistic logic programming language, with new constructs that allow the representation of (infinite-horizon) Markov decision processes. This new language can represent relational statements, including symmetric and transitive definitions, an advantage over other planning domain languages such as RDDL. We show how to exploit the logic structure in the language to perform Value Iteration. Preliminary experiments demonstrate the effectiveness of our framework.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Probabilistic logic programming combines logic and probability, so as to obtain a rich modeling language. In this work, we extend ProbLog, a popular probabilistic logic programming language, with new constructs that allow the representation of (infinite-horizon) Markov decision processes. This new language can represent relational statements, including symmetric and transitive definitions, an advantage over other planning domain languages such as RDDL. We show how to exploit the logic structure in the language to perform Value Iteration. Preliminary experiments demonstrate the effectiveness of our framework.
由概率逻辑规划指定的马尔可夫决策过程:表示与解
概率逻辑编程将逻辑和概率相结合,从而获得丰富的建模语言。在这项工作中,我们扩展了ProbLog,一种流行的概率逻辑编程语言,使用新的结构允许表示(无限视界)马尔可夫决策过程。这种新语言可以表示关系语句,包括对称和传递定义,这是与RDDL等其他规划领域语言相比的一个优势。我们展示了如何利用语言中的逻辑结构来执行值迭代。初步实验证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信