FAQAugmenter: Suggesting Questions for Enterprise FAQ Pages

Ankush Chatterjee, Manish Gupta, Puneet Agrawal
{"title":"FAQAugmenter: Suggesting Questions for Enterprise FAQ Pages","authors":"Ankush Chatterjee, Manish Gupta, Puneet Agrawal","doi":"10.1145/3336191.3371862","DOIUrl":null,"url":null,"abstract":"Lack of comprehensive information on frequently asked questions (FAQ) web pages forces users to pose their questions on community question answering forums or contact businesses over slow media like emails or phone calls. This in turn often results into sub-optimal user experience and opportunity loss for businesses. While previous work focuses on FAQ mining and answering queries from FAQ pages, there is no work on verifying completeness or augmenting FAQ pages. We present a system, called FAQAugmenter, which given an FAQ web page, (1) harnesses signals from query logs and the web corpus to identify missing topics, and (2) suggests ranked list of questions for FAQ web page augmentation. Our experiments with FAQ pages from five enterprises each across three categories (banks, hospitals and airports) show that FAQAugmenter suggests high quality relevant questions. FAQAugmenter will contribute significantly not just in improving quality of FAQ web pages but also in turn improving quality of downstream applications like Microsoft QnA Maker.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Lack of comprehensive information on frequently asked questions (FAQ) web pages forces users to pose their questions on community question answering forums or contact businesses over slow media like emails or phone calls. This in turn often results into sub-optimal user experience and opportunity loss for businesses. While previous work focuses on FAQ mining and answering queries from FAQ pages, there is no work on verifying completeness or augmenting FAQ pages. We present a system, called FAQAugmenter, which given an FAQ web page, (1) harnesses signals from query logs and the web corpus to identify missing topics, and (2) suggests ranked list of questions for FAQ web page augmentation. Our experiments with FAQ pages from five enterprises each across three categories (banks, hospitals and airports) show that FAQAugmenter suggests high quality relevant questions. FAQAugmenter will contribute significantly not just in improving quality of FAQ web pages but also in turn improving quality of downstream applications like Microsoft QnA Maker.
faqaugmentor:为企业FAQ页面提出问题建议
在常见问题(FAQ)网页上缺乏全面的信息,迫使用户在社区问答论坛上提出问题,或者通过电子邮件或电话等缓慢的媒体与企业联系。这通常会导致次优的用户体验和企业的机会损失。虽然以前的工作侧重于FAQ挖掘和回答FAQ页面中的查询,但没有在验证完整性或增加FAQ页面方面进行工作。我们提出了一个名为FAQAugmenter的系统,它给出了一个FAQ网页,(1)利用查询日志和网络语料库的信号来识别缺失的主题,(2)建议FAQ网页增强的问题排序列表。我们对五家企业的FAQ页面进行了实验,这些企业分别来自三个类别(银行、医院和机场),结果表明FAQAugmenter提出了高质量的相关问题。FAQAugmenter不仅将显著提高FAQ网页的质量,还将提高下游应用程序(如Microsoft QnA Maker)的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信