Detecting Subject-Weapon Visual Relationships

Thomas Truong, S. Yanushkevich
{"title":"Detecting Subject-Weapon Visual Relationships","authors":"Thomas Truong, S. Yanushkevich","doi":"10.1109/SSCI47803.2020.9308574","DOIUrl":null,"url":null,"abstract":"Computer vision-based weapon detection method- ologies and applications in safety and security have fallen behind when compared to state-of-the-art computer vision applications problems in other areas. In this paper we propose a novel visual relationship detection model trained on the Open Images V6 dataset to detect the visual relationships of “holds” and “wears” between people and objects. We also introduce an application of the proposed model to detect if weapons are being held. Weapons are an unseen object class to the network. The best proposed model achieves an accuracy of 90.01% ±2.05 % on the test set of the Open Images V6 dataset for classifying the “holds” and “wears” visual relationships.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Computer vision-based weapon detection method- ologies and applications in safety and security have fallen behind when compared to state-of-the-art computer vision applications problems in other areas. In this paper we propose a novel visual relationship detection model trained on the Open Images V6 dataset to detect the visual relationships of “holds” and “wears” between people and objects. We also introduce an application of the proposed model to detect if weapons are being held. Weapons are an unseen object class to the network. The best proposed model achieves an accuracy of 90.01% ±2.05 % on the test set of the Open Images V6 dataset for classifying the “holds” and “wears” visual relationships.
探测目标-武器视觉关系
与计算机视觉在其他领域的应用问题相比,基于计算机视觉的武器探测技术及其在安全与安保领域的应用还比较落后。在本文中,我们提出了一种新的视觉关系检测模型,该模型是在Open Images V6数据集上训练的,用于检测人与物体之间“hold”和“wears”的视觉关系。我们还介绍了该模型在检测是否持有武器方面的应用。武器是网络中看不见的对象类。在Open Images V6数据集的测试集上,提出的最佳模型对“hold”和“wears”视觉关系进行分类的准确率为90.01%±2.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信