Estimating Computer Virus Propagation Based on Markovian Arrival Processes

H. Okamura, T. Dohi
{"title":"Estimating Computer Virus Propagation Based on Markovian Arrival Processes","authors":"H. Okamura, T. Dohi","doi":"10.1109/PRDC.2010.36","DOIUrl":null,"url":null,"abstract":"This paper refines statistical inference of computer virus propagation with maximum likelihood (ML) estimation. In particular, in order to utilize actual infection data that are opened in Web sites, we reformulate classical stochastic models by Markovian arrival processes (MAPs). The reformulated models lead to plausible parameter estimation based on the ML estimation. We propose efficient algorithms to compute the ML estimates of epidemic models using the EM (expectation-maximization) algorithm. Experiments illustrate the estimation of virus propagation with real infection data by our methods. Finally we refer to characterization of virus propagation from the view point of stochastic modeling.","PeriodicalId":382974,"journal":{"name":"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2010.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper refines statistical inference of computer virus propagation with maximum likelihood (ML) estimation. In particular, in order to utilize actual infection data that are opened in Web sites, we reformulate classical stochastic models by Markovian arrival processes (MAPs). The reformulated models lead to plausible parameter estimation based on the ML estimation. We propose efficient algorithms to compute the ML estimates of epidemic models using the EM (expectation-maximization) algorithm. Experiments illustrate the estimation of virus propagation with real infection data by our methods. Finally we refer to characterization of virus propagation from the view point of stochastic modeling.
基于马尔可夫到达过程的计算机病毒传播估计
本文利用最大似然估计改进了计算机病毒传播的统计推断。特别是,为了利用网站上公开的实际感染数据,我们通过马尔可夫到达过程(MAPs)重新制定了经典的随机模型。重新表述的模型导致基于ML估计的似是而非的参数估计。我们提出了使用EM(期望最大化)算法来计算流行病模型的ML估计的有效算法。实验结果表明,本文提出的方法可以用实际感染数据对病毒传播进行估计。最后,我们从随机建模的角度来描述病毒的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信