Application of an evolution strategy to the Hopfield model of associative memory

A. Imada, K. Araki
{"title":"Application of an evolution strategy to the Hopfield model of associative memory","authors":"A. Imada, K. Araki","doi":"10.1109/ICEC.1997.592402","DOIUrl":null,"url":null,"abstract":"We apply evolutionary computations to Hopfield's neural network model of associative memory. In the Hopfield model, an almost infinite number of combinations of synaptic weights gives a network an associative memory function. Furthermore, there is a trade-off between the storage capacity and the size of the basin of attraction. Therefore, the model can be thought of as a test suite of multi-modal and/or multi-objective function optimizations. As a preliminary stage, we investigate the basic behavior of an associative memory under simple evolutionary processes. In this paper, we present some experiments using an evolution strategy.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We apply evolutionary computations to Hopfield's neural network model of associative memory. In the Hopfield model, an almost infinite number of combinations of synaptic weights gives a network an associative memory function. Furthermore, there is a trade-off between the storage capacity and the size of the basin of attraction. Therefore, the model can be thought of as a test suite of multi-modal and/or multi-objective function optimizations. As a preliminary stage, we investigate the basic behavior of an associative memory under simple evolutionary processes. In this paper, we present some experiments using an evolution strategy.
进化策略在联想记忆Hopfield模型中的应用
我们将进化计算应用于Hopfield的联想记忆神经网络模型。在Hopfield模型中,几乎无限数量的突触权重组合赋予网络联想记忆功能。此外,在蓄水能力和吸引力盆地的大小之间存在权衡。因此,该模型可以被认为是一个多模态和/或多目标函数优化的测试套件。作为初步阶段,我们研究了联想记忆在简单进化过程中的基本行为。在本文中,我们提出了一些使用进化策略的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信