An Autonomous Deterioration Prediction Based Handover Model for 5G Networks

Masoto Chiputa, Peter Han Joo Chong, Arun K. Kumar
{"title":"An Autonomous Deterioration Prediction Based Handover Model for 5G Networks","authors":"Masoto Chiputa, Peter Han Joo Chong, Arun K. Kumar","doi":"10.1109/ICOCO53166.2021.9673555","DOIUrl":null,"url":null,"abstract":"Millimeter Waves (mmWaves) are very sensitive to the user and topographic dynamics. They adversely leads to irregular cell patterns that ultimately affect connectivity and access quality in mobile networks. For instance, following the adoption of mmWaves in fifth-generation (5G) networks, irregularities in mmWave cell patterns subject most classic Handover (HO) schemes to wrong, too early, or late HOs scenes. To remedy the HO challenges and choose more reliable links, this paper proposes a HO scheme that predicts and assesses the target link's immediate behaviors and deterioration pattern post-HOs. This work uses the Jump Markov Linear System (JMLS) model, which takes into account abrupt changes in the system dynamics. Thus, this work exploits the JMLS capability to account for likely abrupt changes as users switch between Line of Sight (LOS) and non-NLOS scenes following user/topographic dynamics. Simulation results show that knowledge about link deterioration patterns rather than immediate behaviour after HO helps cut unnecessary HO failures.","PeriodicalId":262412,"journal":{"name":"2021 IEEE International Conference on Computing (ICOCO)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Computing (ICOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCO53166.2021.9673555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Millimeter Waves (mmWaves) are very sensitive to the user and topographic dynamics. They adversely leads to irregular cell patterns that ultimately affect connectivity and access quality in mobile networks. For instance, following the adoption of mmWaves in fifth-generation (5G) networks, irregularities in mmWave cell patterns subject most classic Handover (HO) schemes to wrong, too early, or late HOs scenes. To remedy the HO challenges and choose more reliable links, this paper proposes a HO scheme that predicts and assesses the target link's immediate behaviors and deterioration pattern post-HOs. This work uses the Jump Markov Linear System (JMLS) model, which takes into account abrupt changes in the system dynamics. Thus, this work exploits the JMLS capability to account for likely abrupt changes as users switch between Line of Sight (LOS) and non-NLOS scenes following user/topographic dynamics. Simulation results show that knowledge about link deterioration patterns rather than immediate behaviour after HO helps cut unnecessary HO failures.
基于退化自主预测的5G网络切换模型
毫米波(mmWaves)对用户和地形动态非常敏感。它们会导致不规则的小区模式,最终影响移动网络的连接和接入质量。例如,在第五代(5G)网络中采用毫米波之后,毫米波小区模式的不规则性使大多数经典的切换(HO)方案出现错误、过早或晚的HO场景。为了解决HO挑战,选择更可靠的链路,本文提出了一种HO方案,该方案可以预测和评估目标链路在HO后的即时行为和劣化模式。本文采用跳跃马尔可夫线性系统(JMLS)模型,该模型考虑了系统动力学中的突变。因此,这项工作利用JMLS的能力来解释用户在视线(LOS)和非nlos场景之间切换时可能出现的突然变化。仿真结果表明,了解链路劣化模式而不是HO后的直接行为有助于减少不必要的HO故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信