Estimation of Control Parameters in Neuromuscular Skeletal Systems Combined with CNNs and Parametric Identification

M. Kikuchi
{"title":"Estimation of Control Parameters in Neuromuscular Skeletal Systems Combined with CNNs and Parametric Identification","authors":"M. Kikuchi","doi":"10.1109/ICAIIC.2019.8669022","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a method to estimate the control parameters of the neuromuscular skeletal system by using convolution neural networks (CNNs) and parametric identification together. We selected a human standing attitude control system as an object and conducted measurement experiments with the output of barycenter fluctuation with visual instructions as input. Then, we created an image emphasizing the features of the result and carried out transfer learning with stochastic gradient descent method with CNNs using the AlexNet. Here, we classified the measurement time and the result for each subject into 16 classes. On the other hand, we created a mathematical model of the system and carried out a parametric identification of the control parameters of the neuromuscular skeletal system the standing attitude control system using the ARMAX algorithm. Next, using the feature extraction method, the CNN output, and the original parameter estimation method, the control parameters of the verification data estimated without using ARMAX from the CNN output and the control parameter information of the learning data. As the results, (1) the center of gravity fluctuation differs for each subject and each hour. (2) feature extraction works effectively. (3) It is possible to correlate data classified by CNNs and estimated values of control parameters. We showed these three results. Moreover, from the viewpoint of the system model, it suggested that the decision process of deep learning could be analyzed using the change of internal parameters in the system.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce a method to estimate the control parameters of the neuromuscular skeletal system by using convolution neural networks (CNNs) and parametric identification together. We selected a human standing attitude control system as an object and conducted measurement experiments with the output of barycenter fluctuation with visual instructions as input. Then, we created an image emphasizing the features of the result and carried out transfer learning with stochastic gradient descent method with CNNs using the AlexNet. Here, we classified the measurement time and the result for each subject into 16 classes. On the other hand, we created a mathematical model of the system and carried out a parametric identification of the control parameters of the neuromuscular skeletal system the standing attitude control system using the ARMAX algorithm. Next, using the feature extraction method, the CNN output, and the original parameter estimation method, the control parameters of the verification data estimated without using ARMAX from the CNN output and the control parameter information of the learning data. As the results, (1) the center of gravity fluctuation differs for each subject and each hour. (2) feature extraction works effectively. (3) It is possible to correlate data classified by CNNs and estimated values of control parameters. We showed these three results. Moreover, from the viewpoint of the system model, it suggested that the decision process of deep learning could be analyzed using the change of internal parameters in the system.
结合cnn和参数辨识的神经肌肉骨骼系统控制参数估计
本文介绍了一种将卷积神经网络(cnn)与参数辨识相结合的神经肌肉骨骼系统控制参数估计方法。以人体站立姿态控制系统为对象,以重心波动为输出,以视觉指令为输入,进行了测量实验。然后,我们创建了一个强调结果特征的图像,并使用AlexNet与cnn进行了随机梯度下降法的迁移学习。在这里,我们将每个科目的测量时间和结果分为16类。另一方面,建立了系统的数学模型,利用ARMAX算法对神经肌肉骨骼系统和站立姿态控制系统的控制参数进行了参数辨识。接下来,使用特征提取方法、CNN输出和原始参数估计方法,在不使用ARMAX的情况下,从CNN输出和学习数据的控制参数信息中估计验证数据的控制参数。结果表明:(1)每个受试者、每个小时的重心波动是不同的。(2)特征提取效果好。(3)可以将cnn分类的数据与控制参数的估计值相关联。我们展示了这三个结果。此外,从系统模型的角度,提出可以利用系统内部参数的变化来分析深度学习的决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信