Deep reinforcement learning for partial differential equation control

Amir-massoud Farahmand, S. Nabi, D. Nikovski
{"title":"Deep reinforcement learning for partial differential equation control","authors":"Amir-massoud Farahmand, S. Nabi, D. Nikovski","doi":"10.23919/ACC.2017.7963427","DOIUrl":null,"url":null,"abstract":"This paper develops a data-driven method for control of partial differential equations (PDE) based on deep reinforcement learning (RL) techniques. We design a Deep Fitted Q-Iteration (DFQI) algorithm that works directly with a high-dimensional representation of the state of PDE, thus allowing us to avoid the model order reduction step common in the conventional PDE control design approaches. We apply the DFQI algorithm to the problem of flow control for time-varying 2D convection-diffusion PDE, as a simplified model for heating, ventilating, air conditioning (HVAC) control design in a room. We also study the transfer learning of a policy learned for a PDE to another one.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper develops a data-driven method for control of partial differential equations (PDE) based on deep reinforcement learning (RL) techniques. We design a Deep Fitted Q-Iteration (DFQI) algorithm that works directly with a high-dimensional representation of the state of PDE, thus allowing us to avoid the model order reduction step common in the conventional PDE control design approaches. We apply the DFQI algorithm to the problem of flow control for time-varying 2D convection-diffusion PDE, as a simplified model for heating, ventilating, air conditioning (HVAC) control design in a room. We also study the transfer learning of a policy learned for a PDE to another one.
偏微分方程控制的深度强化学习
本文提出了一种基于深度强化学习(RL)技术的偏微分方程控制的数据驱动方法。我们设计了一种深度拟合q -迭代(DFQI)算法,该算法直接与PDE状态的高维表示一起工作,从而使我们能够避免传统PDE控制设计方法中常见的模型阶降步骤。将DFQI算法应用于时变二维对流扩散偏微分方程的流动控制问题,作为室内暖通空调(HVAC)控制设计的简化模型。我们还研究了从一个PDE学到的策略到另一个PDE的迁移学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信