Comparison of bicubic and Bezier polynomials for surface parameterization in volumetric images

Francis K. H. Quek, Vishwas Kulkarni, C. Kirbas
{"title":"Comparison of bicubic and Bezier polynomials for surface parameterization in volumetric images","authors":"Francis K. H. Quek, Vishwas Kulkarni, C. Kirbas","doi":"10.1109/BIBE.2003.1188935","DOIUrl":null,"url":null,"abstract":"Curvature-based surface features are well suited for use in multimodal medical image registration. The accuracy of such feature-based registration techniques is dependent upon the reliability of the feature computation. The computation of curvature features requires second derivative information that is best obtained from a parametric surface representation. We present a method of explicitly parameterizing surfaces from volumetric data. Surfaces are extracted, without a global thresholding, using active contour models. A Mong basis for each surface patch is estimated and used to transform the patch into local, or parametric, coordinates. Surface patches are fit to first a bicubic polynomial and second to a Bezier polynomial. The bicubic polynomial is fit in local coordinates using least squares solved by singular value decomposition. Bezier polynomial is fit using de Casteljau algorithm. We tested our method by reconstructing surfaces from the surface model and analytically computing Gaussian and mean curvatures. The model was tested on analytical and medical data and the results of both methods are compared.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Curvature-based surface features are well suited for use in multimodal medical image registration. The accuracy of such feature-based registration techniques is dependent upon the reliability of the feature computation. The computation of curvature features requires second derivative information that is best obtained from a parametric surface representation. We present a method of explicitly parameterizing surfaces from volumetric data. Surfaces are extracted, without a global thresholding, using active contour models. A Mong basis for each surface patch is estimated and used to transform the patch into local, or parametric, coordinates. Surface patches are fit to first a bicubic polynomial and second to a Bezier polynomial. The bicubic polynomial is fit in local coordinates using least squares solved by singular value decomposition. Bezier polynomial is fit using de Casteljau algorithm. We tested our method by reconstructing surfaces from the surface model and analytically computing Gaussian and mean curvatures. The model was tested on analytical and medical data and the results of both methods are compared.
体积图像表面参数化的双三次多项式和贝塞尔多项式的比较
基于曲率的表面特征非常适合用于多模态医学图像配准。这种基于特征的配准技术的准确性取决于特征计算的可靠性。曲率特征的计算需要二阶导数信息,这种信息最好从参数曲面表示中获得。我们提出了一种从体积数据中显式参数化曲面的方法。曲面的提取,没有全局阈值,使用活动轮廓模型。估计每个表面斑块的蒙基,并用于将斑块转换为局部或参数坐标。表面斑块首先适合于双三次多项式,其次适合于贝塞尔多项式。双三次多项式用奇异值分解的最小二乘法在局部坐标下拟合。采用de Casteljau算法拟合Bezier多项式。我们通过从曲面模型重建曲面并解析计算高斯曲率和平均曲率来测试我们的方法。用分析数据和医学数据对模型进行了检验,并对两种方法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信