Some clustering techniques for modelling uncertain nonlinear systems

A. Zribi, M. Djemel, M. Chtourou
{"title":"Some clustering techniques for modelling uncertain nonlinear systems","authors":"A. Zribi, M. Djemel, M. Chtourou","doi":"10.1109/SSD.2008.4632878","DOIUrl":null,"url":null,"abstract":"This paper presents popular unsupervised clustering algorithms based on neuro-fuzzy, fuzzy c-means (FCM) and agglomerative techniques. The purpose of this paper is to provide clustering methods able to cluster the data patterns without a priori information about the number of clusters. We will show that it is possible to reconcile the FCM algorithm with the unsupervised clustering algorithms. Finally, to show the efficiencies of these algorithms, we will apply them to model the behaviour of uncertain system.","PeriodicalId":267264,"journal":{"name":"2008 5th International Multi-Conference on Systems, Signals and Devices","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th International Multi-Conference on Systems, Signals and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2008.4632878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents popular unsupervised clustering algorithms based on neuro-fuzzy, fuzzy c-means (FCM) and agglomerative techniques. The purpose of this paper is to provide clustering methods able to cluster the data patterns without a priori information about the number of clusters. We will show that it is possible to reconcile the FCM algorithm with the unsupervised clustering algorithms. Finally, to show the efficiencies of these algorithms, we will apply them to model the behaviour of uncertain system.
不确定非线性系统建模的聚类技术
本文介绍了基于神经模糊、模糊c均值(FCM)和聚类技术的无监督聚类算法。本文的目的是提供一种聚类方法,能够在不需要先验的聚类数量信息的情况下对数据模式进行聚类。我们将证明FCM算法与无监督聚类算法之间的调和是可能的。最后,为了证明这些算法的有效性,我们将把它们应用于不确定系统的行为建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信