New Particle Swarm Optimization Algorithm Incorporating Reproduction Operator for Solving Global Optimization Problems

M. Pant, R. Thangaraj, A. Abraham
{"title":"New Particle Swarm Optimization Algorithm Incorporating Reproduction Operator for Solving Global Optimization Problems","authors":"M. Pant, R. Thangaraj, A. Abraham","doi":"10.1109/HIS.2007.20","DOIUrl":null,"url":null,"abstract":"This paper presents a new variant of Basic Particle Swarm Optimization (BPSO) algorithm named QI-PSO for solving global optimization problems. The QI-PSO algorithm makes use of a multiparent, quadratic crossover/reproduction operator defined by us in the BPSO algorithm. The proposed algorithm is compared it with BPSO and the numerical results show that QI PSO outperforms the BPSO algorithm in all the sixteen cases taken in this study.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents a new variant of Basic Particle Swarm Optimization (BPSO) algorithm named QI-PSO for solving global optimization problems. The QI-PSO algorithm makes use of a multiparent, quadratic crossover/reproduction operator defined by us in the BPSO algorithm. The proposed algorithm is compared it with BPSO and the numerical results show that QI PSO outperforms the BPSO algorithm in all the sixteen cases taken in this study.
求解全局优化问题的结合繁殖算子的粒子群算法
本文提出了一种新的基本粒子群优化算法(BPSO),即QI-PSO,用于求解全局优化问题。QI-PSO算法利用了我们在BPSO算法中定义的多父、二次交叉/复制算子。将该算法与BPSO算法进行了比较,结果表明QI粒子群算法在所有16种情况下都优于BPSO算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信