Robust oscillatory stability assessment for large interconnected power systems

S. P. Teeuwsen, I. Erlich, M. El-Sharkawi
{"title":"Robust oscillatory stability assessment for large interconnected power systems","authors":"S. P. Teeuwsen, I. Erlich, M. El-Sharkawi","doi":"10.1109/PES.2004.1373203","DOIUrl":null,"url":null,"abstract":"This paper deals with robust dynamic security assessment for large interconnected power systems. Special interest is focused on the prediction of critical inter-area oscillatory modes of power systems based on neural networks. After selection of inputs for the neural network and proper training, the stability condition of the power system can be predicted with high accuracy. Hereby, the neural network outputs are assigned to activations of sampling points in the complex plain depending on the distances to the eigenvalues. This method depends highly on the reliability of the measured input data. Missing or bad input data will automatically lead to false prediction results. This paper proposes different methods, which improve the prediction robustness by detecting bad data inputs and outliers. In a second step, input signals identified as bad data inputs will be restored to their correct value","PeriodicalId":236779,"journal":{"name":"IEEE Power Engineering Society General Meeting, 2004.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Engineering Society General Meeting, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2004.1373203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with robust dynamic security assessment for large interconnected power systems. Special interest is focused on the prediction of critical inter-area oscillatory modes of power systems based on neural networks. After selection of inputs for the neural network and proper training, the stability condition of the power system can be predicted with high accuracy. Hereby, the neural network outputs are assigned to activations of sampling points in the complex plain depending on the distances to the eigenvalues. This method depends highly on the reliability of the measured input data. Missing or bad input data will automatically lead to false prediction results. This paper proposes different methods, which improve the prediction robustness by detecting bad data inputs and outliers. In a second step, input signals identified as bad data inputs will be restored to their correct value
大型互联电力系统鲁棒振荡稳定性评估
研究了大型互联电力系统的鲁棒动态安全评估问题。重点研究了基于神经网络的电力系统临界区域间振荡模式的预测。通过神经网络输入的选择和适当的训练,可以较准确地预测电力系统的稳定状态。因此,神经网络输出根据到特征值的距离分配给复杂平原中采样点的激活。这种方法高度依赖于测量输入数据的可靠性。输入数据缺失或错误将自动导致错误的预测结果。本文提出了不同的方法,通过检测不良数据输入和异常值来提高预测的鲁棒性。在第二步中,识别为坏数据输入的输入信号将恢复到其正确值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信