{"title":"2-D discrete cosine transforms on a fine grain array processor","authors":"Heung-Nam Kim, M. Borah, R. Owens, M. J. Irwin","doi":"10.1109/VLSISP.1994.574760","DOIUrl":null,"url":null,"abstract":"The 2-D DCT has been an industry standard in image data compression. Since its first introduction, a number of fast algorithms and technique have been introduced. Most of them were implemented using specialized VLSI chips. In this paper we present an efficient systolic 2-D DCT algorithm on a 2-D mesh fine-grained array processor. Our algorithm reads non-skewed input subimages and generates the output in non-skewed form with only a small amount of extra processors. It uses the minimum number of multiplications by employing modified small n algorithms. Our implementation of the 2-D DCT on the Micro Grained Array Processor (MGAP), which is a fine-grained and mesh-connected array processor being developed at the Penn State University, exploits massive parallelism. As a result the 2-D DCT of size 8/spl times/8 and 16/spl times/16 pixels for 256/spl times/256 pixel images can be computed at real time processing rates.","PeriodicalId":427356,"journal":{"name":"Proceedings of 1994 IEEE Workshop on VLSI Signal Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Workshop on VLSI Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSISP.1994.574760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The 2-D DCT has been an industry standard in image data compression. Since its first introduction, a number of fast algorithms and technique have been introduced. Most of them were implemented using specialized VLSI chips. In this paper we present an efficient systolic 2-D DCT algorithm on a 2-D mesh fine-grained array processor. Our algorithm reads non-skewed input subimages and generates the output in non-skewed form with only a small amount of extra processors. It uses the minimum number of multiplications by employing modified small n algorithms. Our implementation of the 2-D DCT on the Micro Grained Array Processor (MGAP), which is a fine-grained and mesh-connected array processor being developed at the Penn State University, exploits massive parallelism. As a result the 2-D DCT of size 8/spl times/8 and 16/spl times/16 pixels for 256/spl times/256 pixel images can be computed at real time processing rates.