Distributed anomaly detection by model sharing

Junlin Zhou, Deng Jun, Yan Fu, Yue Wu
{"title":"Distributed anomaly detection by model sharing","authors":"Junlin Zhou, Deng Jun, Yan Fu, Yue Wu","doi":"10.1109/ICACIA.2009.5361096","DOIUrl":null,"url":null,"abstract":"We present a novel general framework for distributed anomaly detection. In the framework, normal behavior is first learned from data from individual data sites using standard anomaly detection algorithms and then these models are combined when predicting anomalies from a new data set. We have investigated seven semi-supervised anomaly detection algorithms for learning normal behavior, as well as proposed method for combining anomaly detection models. Experiments have shown that our proposed combining technique may achieve comparable or even slightly better prediction performance than the anomaly detection models built on the data sets merged from distributed sites.","PeriodicalId":423210,"journal":{"name":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACIA.2009.5361096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a novel general framework for distributed anomaly detection. In the framework, normal behavior is first learned from data from individual data sites using standard anomaly detection algorithms and then these models are combined when predicting anomalies from a new data set. We have investigated seven semi-supervised anomaly detection algorithms for learning normal behavior, as well as proposed method for combining anomaly detection models. Experiments have shown that our proposed combining technique may achieve comparable or even slightly better prediction performance than the anomaly detection models built on the data sets merged from distributed sites.
基于模型共享的分布式异常检测
提出了一种分布式异常检测的通用框架。在该框架中,首先使用标准异常检测算法从单个数据站点的数据中学习正常行为,然后在预测新数据集的异常时将这些模型结合起来。我们研究了7种用于学习正常行为的半监督异常检测算法,并提出了结合异常检测模型的方法。实验表明,与基于分布式站点合并数据集的异常检测模型相比,我们提出的组合技术可以达到相当甚至略好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信