Online Outlier Detection of Energy Data Streams Using Incremental and Kernel PCA Algorithms

Jeremiah D. Deng
{"title":"Online Outlier Detection of Energy Data Streams Using Incremental and Kernel PCA Algorithms","authors":"Jeremiah D. Deng","doi":"10.1109/ICDMW.2016.0062","DOIUrl":null,"url":null,"abstract":"Outlier detection or anomaly detection is an important and challenging issue in data mining, even so in the domain of energy data mining where data are often collected in large amounts but with little labeled information. This paper presents a couple of online outlier detection algorithms based on principal component analysis. Novel algorithmic treatments are introduced to build incremental PCA and kernel PCA algorithms with online learning abilities. Some preliminary experimental results obtained from a real-world household consumption dataset have produced some promising performance for the proposed algorithms.","PeriodicalId":373866,"journal":{"name":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2016.0062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Outlier detection or anomaly detection is an important and challenging issue in data mining, even so in the domain of energy data mining where data are often collected in large amounts but with little labeled information. This paper presents a couple of online outlier detection algorithms based on principal component analysis. Novel algorithmic treatments are introduced to build incremental PCA and kernel PCA algorithms with online learning abilities. Some preliminary experimental results obtained from a real-world household consumption dataset have produced some promising performance for the proposed algorithms.
基于增量和核主成分分析算法的能源数据流异常值在线检测
异常点检测或异常检测是数据挖掘中的一个重要且具有挑战性的问题,即使在能源数据挖掘领域也是如此,因为数据通常是大量收集的,但很少有标记信息。本文提出了几种基于主成分分析的在线离群点检测算法。引入了新的算法处理来构建具有在线学习能力的增量主成分分析和核主成分分析算法。从现实世界的家庭消费数据集获得的一些初步实验结果已经为所提出的算法提供了一些有希望的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信