{"title":"Three-Phase Two-Phase-Clamped Boost-Buck Unity Power Factor Rectifier Employing Novel Variable DC Link Voltage Input Current Control","authors":"D. Menzi, D. Bortis, J. Kolar","doi":"10.1109/PEAC.2018.8590599","DOIUrl":null,"url":null,"abstract":"Battery chargers supplied from the three-phase mains are typically realized as two-stage systems consisting of a three-phase PFC boost-type rectifier with an output DC link capacitor followed by a DC/DC buck converter if boost and buck functionality is required. In this paper, a new modulation scheme for this topology is presented, where always only one out of three rectifier half-bridges is pulse width modulated, while the remaining two phases are clamped and therefore a higher efficiency is achieved. This modulation concept with a minimum number of active half-bridges, denoted as 1/3 rectifier, becomes possible if in contrast to other modulation schemes the intermediate DC link voltage is varied in a six-pulse voltage fashion, while still sinusoidal grid currents in phase with their corresponding phase voltages and a constant battery output voltage are obtained. In this paper, a detailed description of the novel 1/3 rectifier's operating principle and the corresponding control structure are presented and the proper closed loop operation is verified by means of a circuit simulation. Finally, the performance gain of the 1/3 rectifier control scheme compared to conventional modulation schemes is evaluated by means of a virtual prototype system.","PeriodicalId":446770,"journal":{"name":"2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEAC.2018.8590599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Battery chargers supplied from the three-phase mains are typically realized as two-stage systems consisting of a three-phase PFC boost-type rectifier with an output DC link capacitor followed by a DC/DC buck converter if boost and buck functionality is required. In this paper, a new modulation scheme for this topology is presented, where always only one out of three rectifier half-bridges is pulse width modulated, while the remaining two phases are clamped and therefore a higher efficiency is achieved. This modulation concept with a minimum number of active half-bridges, denoted as 1/3 rectifier, becomes possible if in contrast to other modulation schemes the intermediate DC link voltage is varied in a six-pulse voltage fashion, while still sinusoidal grid currents in phase with their corresponding phase voltages and a constant battery output voltage are obtained. In this paper, a detailed description of the novel 1/3 rectifier's operating principle and the corresponding control structure are presented and the proper closed loop operation is verified by means of a circuit simulation. Finally, the performance gain of the 1/3 rectifier control scheme compared to conventional modulation schemes is evaluated by means of a virtual prototype system.