M. Laurino, Andrea Piarulli, R. Bedini, A. Gemignani, A. Pingitore, A. L'Abbate, A. Landi, P. Piaggi, D. Menicucci
{"title":"Comparative study of morphological ECG features classificators: An application on athletes undergone to acute physical stress","authors":"M. Laurino, Andrea Piarulli, R. Bedini, A. Gemignani, A. Pingitore, A. L'Abbate, A. Landi, P. Piaggi, D. Menicucci","doi":"10.1109/ISDA.2011.6121662","DOIUrl":null,"url":null,"abstract":"Several methods for automatic heartbeat classification have been developed, but few efforts have been devoted to the recognition of the small ECG changes occurring in healthy people as a response to stimuli. Herein, we describe a procedure for the extraction, selection and classification of features summarizing morphological ECG changes. The proposed procedure is composed by the following stages: 1) extraction of a set of heartbeat morphological features; 2) selection of a subset of features; 3) subject normalization 4) classification. The selection of a subset of features enabled us to summarize ECG changes with only three non redundant features. In addition we performed a comparison between four classificators: k-nearest-neighbors (k-NN), artificial neural networks (ANN), support vector machines (SVM) and naive Bayes classifiers (nB). In order to cope with the possible non linear separation problem, we evaluated two strategies: a subject factor normalization on feature space and the usage of kernel functions for classifiers. The results of the comparison recommended the usage of subject normalization, irrespectively from the classificator: with or without normalization we had the best performance of classification for the linear-SVM and ANN.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Several methods for automatic heartbeat classification have been developed, but few efforts have been devoted to the recognition of the small ECG changes occurring in healthy people as a response to stimuli. Herein, we describe a procedure for the extraction, selection and classification of features summarizing morphological ECG changes. The proposed procedure is composed by the following stages: 1) extraction of a set of heartbeat morphological features; 2) selection of a subset of features; 3) subject normalization 4) classification. The selection of a subset of features enabled us to summarize ECG changes with only three non redundant features. In addition we performed a comparison between four classificators: k-nearest-neighbors (k-NN), artificial neural networks (ANN), support vector machines (SVM) and naive Bayes classifiers (nB). In order to cope with the possible non linear separation problem, we evaluated two strategies: a subject factor normalization on feature space and the usage of kernel functions for classifiers. The results of the comparison recommended the usage of subject normalization, irrespectively from the classificator: with or without normalization we had the best performance of classification for the linear-SVM and ANN.