Combining Visual Analytics and Content Based Data Retrieval Technology for Efficient Data Analysis

J. F. Rodrigues, L. A. Romani, A. Traina, C. Traina
{"title":"Combining Visual Analytics and Content Based Data Retrieval Technology for Efficient Data Analysis","authors":"J. F. Rodrigues, L. A. Romani, A. Traina, C. Traina","doi":"10.1109/IV.2010.101","DOIUrl":null,"url":null,"abstract":"One of the most useful techniques to help visual data analysis systems is interactive filtering (brushing). However, visualization techniques often suffer from overlap of graphical items and multiple attributes complexity, making visual selection inefficient. In these situations, the benefits of data visualization are not fully observable because the graphical items do not pop up as comprehensive patterns. In this work we propose the use of content-based data retrieval technology combined with visual analytics. The idea is to use the similarity query functionalities provided by metric space systems in order to select regions of the data domain according to user-guidance and interests. After that, the data found in such regions feed multiple visualization workspaces so that the user can inspect the correspondent datasets. Our experiments showed that the methodology can break the visual analysis process into smaller problems (views) and that the views hold the expectations of the analyst according to his/her similarity query selection, improving data perception and analytical possibilities. Our contribution introduces a principle that can be used in all sorts of visualization techniques and systems, this principle can be extended with different kinds of integration visualization-metric-space, and with different metrics, expanding the possibilities of visual data analysis in aspects such as semantics and scalability.","PeriodicalId":328464,"journal":{"name":"2010 14th International Conference Information Visualisation","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 14th International Conference Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2010.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

One of the most useful techniques to help visual data analysis systems is interactive filtering (brushing). However, visualization techniques often suffer from overlap of graphical items and multiple attributes complexity, making visual selection inefficient. In these situations, the benefits of data visualization are not fully observable because the graphical items do not pop up as comprehensive patterns. In this work we propose the use of content-based data retrieval technology combined with visual analytics. The idea is to use the similarity query functionalities provided by metric space systems in order to select regions of the data domain according to user-guidance and interests. After that, the data found in such regions feed multiple visualization workspaces so that the user can inspect the correspondent datasets. Our experiments showed that the methodology can break the visual analysis process into smaller problems (views) and that the views hold the expectations of the analyst according to his/her similarity query selection, improving data perception and analytical possibilities. Our contribution introduces a principle that can be used in all sorts of visualization techniques and systems, this principle can be extended with different kinds of integration visualization-metric-space, and with different metrics, expanding the possibilities of visual data analysis in aspects such as semantics and scalability.
结合可视化分析和基于内容的数据检索技术实现高效数据分析
帮助可视化数据分析系统的最有用的技术之一是交互过滤(刷刷)。然而,可视化技术经常受到图形项重叠和多属性复杂性的影响,使得可视化选择效率低下。在这些情况下,数据可视化的好处并不是完全可见的,因为图形项目不会作为综合模式弹出。在这项工作中,我们建议使用基于内容的数据检索技术与视觉分析相结合。其思想是使用度量空间系统提供的相似度查询功能,以便根据用户指导和兴趣选择数据域的区域。之后,在这些区域中找到的数据将提供给多个可视化工作区,以便用户可以检查相应的数据集。我们的实验表明,该方法可以将可视化分析过程分解为更小的问题(视图),并且这些视图根据分析师的相似查询选择持有分析师的期望,从而提高数据感知和分析可能性。我们的贡献介绍了一个可用于各种可视化技术和系统的原则,该原则可以通过不同类型的集成可视化度量空间和不同的度量进行扩展,从而在语义和可伸缩性等方面扩展可视化数据分析的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信