Boby Siswanto, Haryono Soeparno, N. F. Sianipar, W. Budiharto
{"title":"Cardiovascular Disease Analysis Using Correlational Analysis and Association Rules Mining for In-depth Analysis to Identify Predominant Variables","authors":"Boby Siswanto, Haryono Soeparno, N. F. Sianipar, W. Budiharto","doi":"10.1109/ICCoSITE57641.2023.10127722","DOIUrl":null,"url":null,"abstract":"Cardiovascular disease is one of the dangerous non-communicable disorders or diseases that has become one of the causes of death worldwide. Various studies have been conducted to prevent cardiovascular disease in the world. This study analyzed cardiovascular disease medical record data from the Kaggle public dataset by implementing correlational analysis combined with association rule mining to identify variables that are the predominant cause of cardiovascular disease. Correlational analysis can analyze the interrelationships between variables in a dataset, but not in depth. Association rule mining can identify the interrelationships of variables in the form of frequent item sets, which can be calculated for their support and confidence values. The result of this study is a combination of correlation analysis with association rule mining that can identify predominant variables to cause cardiovascular disease. Found that the variable gender=woman, height=short (<165 cm), and age=middle (45-60 years) are more likely to be affected by cardiovascular disease. The variable gender=woman with height=short indicates a 76.07% probability of developing cardiovascular disease.","PeriodicalId":256184,"journal":{"name":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCoSITE57641.2023.10127722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular disease is one of the dangerous non-communicable disorders or diseases that has become one of the causes of death worldwide. Various studies have been conducted to prevent cardiovascular disease in the world. This study analyzed cardiovascular disease medical record data from the Kaggle public dataset by implementing correlational analysis combined with association rule mining to identify variables that are the predominant cause of cardiovascular disease. Correlational analysis can analyze the interrelationships between variables in a dataset, but not in depth. Association rule mining can identify the interrelationships of variables in the form of frequent item sets, which can be calculated for their support and confidence values. The result of this study is a combination of correlation analysis with association rule mining that can identify predominant variables to cause cardiovascular disease. Found that the variable gender=woman, height=short (<165 cm), and age=middle (45-60 years) are more likely to be affected by cardiovascular disease. The variable gender=woman with height=short indicates a 76.07% probability of developing cardiovascular disease.