Homeostatic Agent for General Environment

N. Yoshida
{"title":"Homeostatic Agent for General Environment","authors":"N. Yoshida","doi":"10.1515/jagi-2017-0001","DOIUrl":null,"url":null,"abstract":"Abstract One of the essential aspect in biological agents is dynamic stability. This aspect, called homeostasis, is widely discussed in ethology, neuroscience and during the early stages of artificial intelligence. Ashby’s homeostats are general-purpose learning machines for stabilizing essential variables of the agent in the face of general environments. However, despite their generality, the original homeostats couldn’t be scaled because they searched their parameters randomly. In this paper, first we re-define the objective of homeostats as the maximization of a multi-step survival probability from the view point of sequential decision theory and probabilistic theory. Then we show that this optimization problem can be treated by using reinforcement learning algorithms with special agent architectures and theoretically-derived intrinsic reward functions. Finally we empirically demonstrate that agents with our architecture automatically learn to survive in a given environment, including environments with visual stimuli. Our survival agents can learn to eat food, avoid poison and stabilize essential variables through theoretically-derived single intrinsic reward formulations.","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jagi-2017-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract One of the essential aspect in biological agents is dynamic stability. This aspect, called homeostasis, is widely discussed in ethology, neuroscience and during the early stages of artificial intelligence. Ashby’s homeostats are general-purpose learning machines for stabilizing essential variables of the agent in the face of general environments. However, despite their generality, the original homeostats couldn’t be scaled because they searched their parameters randomly. In this paper, first we re-define the objective of homeostats as the maximization of a multi-step survival probability from the view point of sequential decision theory and probabilistic theory. Then we show that this optimization problem can be treated by using reinforcement learning algorithms with special agent architectures and theoretically-derived intrinsic reward functions. Finally we empirically demonstrate that agents with our architecture automatically learn to survive in a given environment, including environments with visual stimuli. Our survival agents can learn to eat food, avoid poison and stabilize essential variables through theoretically-derived single intrinsic reward formulations.
一般环境稳态剂
生物制剂的动态稳定性是生物制剂研究的一个重要方面。这方面被称为内稳态,在行为学、神经科学和人工智能的早期阶段被广泛讨论。Ashby的自稳态器是通用的学习机器,用于在面对一般环境时稳定代理的基本变量。然而,尽管它们具有通用性,但原始的自稳态器无法缩放,因为它们随机搜索其参数。本文首先从序列决策理论和概率论的观点出发,将自稳态器的目标重新定义为多步生存概率的最大化。然后,我们证明了这种优化问题可以通过使用具有特殊代理架构和理论推导的内在奖励函数的强化学习算法来处理。最后,我们通过经验证明,具有我们架构的智能体可以自动学习在给定环境中生存,包括具有视觉刺激的环境。我们的生存代理可以通过理论推导的单一内在奖励公式来学习吃食物,避免中毒和稳定基本变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信