Semantic extraction of geographic data from web tables for big data integration

I. Cruz, Venkat R. Ganesh, Seyed Iman Mirrezaei
{"title":"Semantic extraction of geographic data from web tables for big data integration","authors":"I. Cruz, Venkat R. Ganesh, Seyed Iman Mirrezaei","doi":"10.1145/2533888.2533939","DOIUrl":null,"url":null,"abstract":"There are millions of web tables with geographic data that are pertinent for big data integration in a variety of domain applications, such as urban sustainability, transportation networks, policy studies, and public health. These tables, however, are heterogeneous in structure, concepts, and metadata. One of the challenges in semantically extracting geographic data is the need to resolve these heterogeneities so as to uncover a conceptual hierarchy, metadata associated with instances, and geographic information---corresponding respectively to ontologies, elements that we call features, and cell values that can be used to identify geographic coordinates. In this paper, we present an architecture with methods to: (1) extract feature-rich web tables; (2) identify features; (3) construct a schema and instances using RDF; (4) perform geocoding. Preliminary experiments led to high accuracy in table identification and feature naming even when compared to manual evaluation.","PeriodicalId":167948,"journal":{"name":"Workshop on Geographic Information Retrieval","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Geographic Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2533888.2533939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

There are millions of web tables with geographic data that are pertinent for big data integration in a variety of domain applications, such as urban sustainability, transportation networks, policy studies, and public health. These tables, however, are heterogeneous in structure, concepts, and metadata. One of the challenges in semantically extracting geographic data is the need to resolve these heterogeneities so as to uncover a conceptual hierarchy, metadata associated with instances, and geographic information---corresponding respectively to ontologies, elements that we call features, and cell values that can be used to identify geographic coordinates. In this paper, we present an architecture with methods to: (1) extract feature-rich web tables; (2) identify features; (3) construct a schema and instances using RDF; (4) perform geocoding. Preliminary experiments led to high accuracy in table identification and feature naming even when compared to manual evaluation.
面向大数据集成的web表地理数据语义提取
在城市可持续性、交通网络、政策研究和公共卫生等不同领域的应用中,有数百万个包含地理数据的网络表与大数据集成相关。然而,这些表在结构、概念和元数据上是异构的。在语义上提取地理数据的挑战之一是需要解决这些异构性,以便揭示概念层次结构、与实例关联的元数据和地理信息——分别对应于本体、我们称为特征的元素和可用于标识地理坐标的单元格值。在本文中,我们提出了一种架构方法:(1)提取特征丰富的web表;(2)识别特征;(3)使用RDF构造模式和实例;(4)进行地理编码。初步的实验结果表明,即使与人工评估相比,表识别和特征命名的准确性也很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信