Sparse channel estimation with regularization method using convolution inequality for entropy

Dongho Han, Sung-Phil Kim, J. Príncipe
{"title":"Sparse channel estimation with regularization method using convolution inequality for entropy","authors":"Dongho Han, Sung-Phil Kim, J. Príncipe","doi":"10.1109/IJCNN.2005.1556270","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the sparse channel estimation problem can be formulated as a regularization problem between mean squared error (MSE) and the L1-norm constraint of the channel impulse response. A simple adaptive method to solve regularization problem using the convolution inequality for entropy is proposed. Performance of this proposed regularization method is compared to the Wiener filter, the matching pursuit (IMP) algorithm and the information criterion based method. The results show that the estimate of the sparse channel using the MSE criterion with the L1-norm constraint outperforms the Wiener filter and the conventional sparse solution methods in terms of MSE of the estimates and the generalization performance.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we show that the sparse channel estimation problem can be formulated as a regularization problem between mean squared error (MSE) and the L1-norm constraint of the channel impulse response. A simple adaptive method to solve regularization problem using the convolution inequality for entropy is proposed. Performance of this proposed regularization method is compared to the Wiener filter, the matching pursuit (IMP) algorithm and the information criterion based method. The results show that the estimate of the sparse channel using the MSE criterion with the L1-norm constraint outperforms the Wiener filter and the conventional sparse solution methods in terms of MSE of the estimates and the generalization performance.
基于熵卷积不等式的稀疏信道估计正则化方法
本文证明了稀疏信道估计问题可以表述为信道脉冲响应的均方误差(MSE)与l1范数约束之间的正则化问题。提出了一种利用熵的卷积不等式求解正则化问题的简单自适应方法。将该正则化方法的性能与维纳滤波、匹配追踪算法和基于信息准则的方法进行了比较。结果表明,基于l1范数约束的MSE准则的稀疏信道估计在估计的MSE和泛化性能方面优于维纳滤波和传统的稀疏解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信